cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A364012 Expansion of Sum_{k>0} k * x^k / (1 + x^(3*k)).

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 8, 6, 9, 9, 11, 9, 14, 16, 15, 11, 17, 18, 20, 13, 24, 21, 23, 18, 26, 28, 27, 24, 29, 27, 32, 22, 33, 33, 40, 27, 38, 40, 42, 25, 41, 48, 44, 31, 45, 45, 47, 33, 57, 47, 51, 42, 53, 54, 56, 48, 60, 57, 59, 39, 62, 64, 72, 43, 70, 63, 68, 49, 69, 72, 71, 54, 74, 76, 78
Offset: 1

Views

Author

Seiichi Manyama, Jul 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := -DivisorSum[n, (-1)^(n/#) * # &, Mod[n/#, 3] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 01 2023 *)
  • PARI
    a(n) = -sumdiv(n, d, (n/d%3==1)*(-1)^(n/d)*d);

Formula

G.f.: Sum_{k>0} (-1)^(k-1) * x^(3*k-2) / (1 - x^(3*k-2))^2.
a(n) = -Sum_{d|n, n/d==1 (mod 3)} (-1)^(n/d) * d.

A363037 Expansion of Sum_{k>0} x^k / (1 + x^(4*k)).

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 1, 0, 1, 0, 1, 2, 2, 1, 0, 0, 1, 1, 1, 1, 0, 2, 1, 0, 0, 1, 1, 2, 2, 0, 2, 0, 1, 0, 0, 2, 0, 1, 1, 0, 1, 1, 1, 2, 1, 2, 0, 0, 2, 0, 1, 2, 0, 1, 0, 0, 1, 1, 1, 0, 2, 1, 2, 0, 0, 1, 2, 2, 0, 1, 1, 0, 0, 1, 0, 3, 2, 1, 0, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 0, 1, 2, 2, 3, 1, 0, 2, 1, 0, 0
Offset: 1

Views

Author

Seiichi Manyama, Jul 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^((# - 1)/4) &, Mod[#, 4] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 03 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%4==1)*(-1)^((d-1)/4));

Formula

G.f.: Sum_{k>0} (-1)^(k-1) * x^(4*k-3) / (1 - x^(4*k-3)).
a(n) = Sum_{d|n, d==1 (mod 4)} (-1)^((d-1)/4).

A364043 Expansion of Sum_{k>0} x^k / (1 + x^(5*k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 0, 1, 1, 1, 0, 1, 0, 1, 1, 2, 2, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, -1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 0, 1, -1, 1, 1, 2, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 2, 2, 0, 1, 0, 1, 1, 1, 1, 2, -1, 1, 1, 1, 0, 2, -1, 1, 0, 2, 2, 1, 1, 1, 0, 1, 2, 1, 0, 2, 0, 2, 1, 1, -2, 1, 1, 2, 1, 2, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Jul 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := -DivisorSum[n, (-1)^# &, Mod[#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 05 2023 *)
  • PARI
    a(n) = -sumdiv(n, d, (d%5==1)*(-1)^d);

Formula

G.f.: Sum_{k>0} (-1)^(k-1) * x^(5*k-4) / (1 - x^(5*k-4)).
a(n) = -Sum_{d|n, d==1 (mod 5)} (-1)^d.

A364204 Expansion of Sum_{k>=0} x^(3*k+1) / (1 + x^(3*k+1)).

Original entry on oeis.org

1, -1, 1, 0, 1, -1, 2, -2, 1, 0, 1, 0, 2, -2, 1, -1, 1, -1, 2, -1, 2, 0, 1, -2, 2, -2, 1, 0, 1, 0, 2, -3, 1, 0, 2, 0, 2, -2, 2, -2, 1, -2, 2, -1, 1, 0, 1, -1, 3, -1, 1, 0, 1, -1, 2, -4, 2, 0, 1, -1, 2, -2, 2, -2, 2, 0, 2, -1, 1, 0, 1, -2, 2, -2, 2, 0, 2, -2, 2, -3, 1, 0, 1, 0, 2, -2, 1, -2, 1, 0, 4, -1
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 14 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 92; CoefficientList[Series[Sum[x^(3 k + 1)/(1 + x^(3 k + 1)), {k, 0, nmax}], {x, 0, nmax}], x] // Rest
    Table[DivisorSum[n, (-1)^(# + 1) &, MemberQ[{1}, Mod[n/#, 3]] &], {n, 1, 92}]

Formula

a(n) = Sum_{d|n, n/d==1 (mod 3)} (-1)^(d+1).

A364013 Expansion of Sum_{k>0} k^2 * x^k / (1 + x^(3*k)).

Original entry on oeis.org

1, 4, 9, 15, 25, 36, 50, 60, 81, 99, 121, 135, 170, 200, 225, 239, 289, 324, 362, 371, 450, 483, 529, 540, 626, 680, 729, 750, 841, 891, 962, 956, 1089, 1155, 1250, 1215, 1370, 1448, 1530, 1483, 1681, 1800, 1850, 1811, 2025, 2115, 2209, 2151, 2451, 2479, 2601, 2550, 2809, 2916, 3026
Offset: 1

Views

Author

Seiichi Manyama, Jul 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := -DivisorSum[n, (-1)^(n/#) * #^2 &, Mod[n/#, 3] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 01 2023 *)
  • PARI
    a(n) = -sumdiv(n, d, (n/d%3==1)*(-1)^(n/d)*d^2);

Formula

a(n) = -Sum_{d|n, n/d==1 (mod 3)} (-1)^(n/d) * d^2.

A364047 Expansion of Sum_{k>0} x^k / (1 + x^(6*k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 2, 2, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 0, 2, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 0, 0, 0, 1, 1, 1, 2, 0, 0, 1, 2, 1, 0, 1, 1, 0, 1, 1, 2, 2, 2, 0, 0, 2, 0, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 2, 1, 1, 2, 1, 1, 0, 2
Offset: 1

Views

Author

Seiichi Manyama, Jul 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^((#-1)/6) &, Mod[#, 6] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 03 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%6==1)*(-1)^((d-1)/6));

Formula

G.f.: Sum_{k>0} (-1)^(k-1) * x^(6*k-5) / (1 - x^(6*k-5)).
a(n) = Sum_{d|n, d==1 (mod 6)} (-1)^((d-1)/6).
Showing 1-6 of 6 results.