A002331 Values of x in the solution to p = x^2 + y^2, x <= y, with prime p = A002313(n).
1, 1, 2, 1, 2, 1, 4, 2, 5, 3, 5, 4, 1, 3, 7, 4, 7, 6, 2, 9, 7, 1, 2, 8, 4, 1, 10, 9, 5, 2, 12, 11, 9, 5, 8, 7, 10, 6, 1, 3, 14, 12, 7, 4, 10, 5, 11, 10, 14, 13, 1, 8, 5, 17, 16, 4, 13, 6, 12, 1, 5, 15, 2, 9, 19, 12, 17, 11, 5, 14, 10, 18, 4, 6, 16, 20, 19, 10, 13, 4, 6, 15, 22, 11, 3, 5
Offset: 1
Keywords
Examples
The following table shows the relationship between several closely related sequences: Here p = A002144 = primes == 1 (mod 4), p = a^2+b^2 with a < b; a = A002331, b = A002330, t_1 = ab/2 = A070151; p^2 = c^2+d^2 with c < d; c = A002366, d = A002365, t_2 = 2ab = A145046, t_3 = b^2-a^2 = A070079, with {c,d} = {t_2, t_3}, t_4 = cd/2 = ab(b^2-a^2). --------------------------------- .p..a..b..t_1..c...d.t_2.t_3..t_4 --------------------------------- .5..1..2...1...3...4...4...3....6 13..2..3...3...5..12..12...5...30 17..1..4...2...8..15...8..15...60 29..2..5...5..20..21..20..21..210 37..1..6...3..12..35..12..35..210 41..4..5..10...9..40..40...9..180 53..2..7...7..28..45..28..45..630 .................................
References
- A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- A. T. Benjamin and D. Zeilberger, Pythagorean primes and palindromic continued fractionsINTEGERS 5(1) (2005) #A30
- John Brillhart, Note on representing a prime as a sum of two squares, Math. Comp. 26 (1972), pp. 1011-1013.
- A. J. C. Cunningham, Quadratic Partitions, Hodgson, London, 1904. [Annotated scans of selected pages]
- K. Matthews, Serret's algorithm Server.
- J. Todd, A problem on arc tangent relations, Amer. Math. Monthly, 56 (1949), 517-528.
- Eric Weisstein's World of Mathematics, Fermat's 4n Plus 1 Theorem.
Programs
-
Maple
See A002330 for Maple program. # alternative A002331 := proc(n) A363051(A002313(n)) ; end proc: seq(A002331(n),n=1..100) ; # R. J. Mathar, Feb 01 2024
-
Mathematica
pmax = 1000; x[p_] := Module[{x, y}, x /. ToRules[Reduce[0 <= x <= y && x^2 + y^2 == p, {x, y}, Integers]]]; For[n=1; p=2, p
Jean-François Alcover, Feb 26 2016 *) -
PARI
f(p)=my(s=lift(sqrt(Mod(-1,p))),x=p,t);if(s>p/2,s=p-s); while(s^2>p,t=s;s=x%s;x=t);s forprime(p=2,1e3,if(p%4-3,print1(sqrtint(p-f(p)^2)", "))) \\ Charles R Greathouse IV, Apr 24 2012
-
PARI
do(p)=qfbsolve(Qfb(1,0,1),p)[2] forprime(p=2,1e3,if(p%4-3,print1(do(p)", "))) \\ Charles R Greathouse IV, Sep 26 2013