cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363066 Number of partitions p of n such that (1/3)*max(p) is a part of p.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 2, 3, 5, 6, 9, 11, 16, 20, 27, 33, 45, 55, 72, 89, 116, 142, 181, 222, 281, 343, 429, 522, 649, 786, 967, 1168, 1429, 1719, 2088, 2504, 3026, 3615, 4345, 5174, 6192, 7349, 8755, 10360, 12297, 14507, 17154, 20182, 23788, 27910, 32790, 38374, 44955, 52480, 61307, 71402
Offset: 0

Views

Author

Seiichi Manyama, May 16 2023

Keywords

Examples

			a(7) = 3 counts these partitions:  331, 3211, 31111.
		

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(4*k)/Product[1 - x^j, {j, 1, 3*k}], {k, 0, nmax}], {x, 0, nmax}], x]  (* Vaclav Kotesovec, Jun 18 2025 *)
    nmax = 60; p=1; s=1; Do[p=Expand[p*(1-x^(3*k))*(1-x^(3*k-1))*(1-x^(3*k-2))]; p=Take[p, Min[nmax+1, Exponent[p, x]+1, Length[p]]]; s+=x^(4*k)/p; , {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 18 2025 *)
    Join[{1},Table[Count[IntegerPartitions[n],?(MemberQ[#,#[[1]]/3]&)],{n,60}]] (* _Harvey P. Dale, Jun 29 2025 *)
  • PARI
    a(n) = sum(k=0, n\4, #partitions(n-4*k, 3*k));

Formula

G.f.: Sum_{k>=0} x^(4*k)/Product_{j=1..3*k} (1-x^j).
a(n) ~ Gamma(1/3) * Pi^(1/3) * exp(Pi*sqrt(2*n/3)) / (2^(13/6) * 3^(8/3) * n^(7/6)). - Vaclav Kotesovec, Jun 19 2025