cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363076 Number of partitions of n such that 4*(least part) + 1 = greatest part.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 8, 10, 14, 19, 25, 33, 41, 51, 65, 79, 97, 116, 140, 165, 198, 233, 272, 316, 369, 422, 493, 561, 643, 731, 835, 943, 1072, 1205, 1359, 1524, 1717, 1911, 2147, 2387, 2665, 2960, 3295, 3640, 4049, 4469, 4950, 5455, 6028, 6622, 7310, 8024, 8826, 9676, 10632, 11627, 12765
Offset: 1

Views

Author

Seiichi Manyama, May 17 2023

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; p = 1; s = 0; Do[p = Simplify[p*(1 - x^(4*k - 3))*(1 - x^(4*k - 2))*(1 - x^(4*k - 1))*(1 - x^(4*k))/(1 - x^k)]; p = Normal[p + O[x]^(nmax + 1)]; s += x^(5*k + 1)/(1 - x^k)/(1 - x^(4*k + 1))/p;, {k, 1, nmax}]; Rest[CoefficientList[Series[s, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jun 19 2025 *)
  • PARI
    my(N=70, x='x+O('x^N)); concat([0, 0, 0, 0, 0], Vec(sum(k=1, N, x^(5*k+1)/prod(j=k, 4*k+1, 1-x^j))))

Formula

G.f.: Sum_{k>=1} x^(5*k+1)/Product_{j=k..4*k+1} (1-x^j).