cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A363304 Expansion of g.f. A(x) satisfying A(x) = 1 + x*(A(x)^4 + A(x)^7).

Original entry on oeis.org

1, 2, 22, 350, 6538, 133658, 2895214, 65294502, 1516963346, 36056007602, 872615973766, 21430572885422, 532737957899290, 13379121740808266, 338941379999841758, 8651415618928816886, 222278432539991439906, 5743974149517874477922, 149192980850883703986166
Offset: 0

Views

Author

Paul D. Hanna, May 29 2023

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 22*x^2 + 350*x^3 + 6538*x^4 + 133658*x^5 + 2895214*x^6 + 65294502*x^7 + 1516963346*x^8 + 36056007602*x^9 + ...
where A(x) = 1 + x*(A(x)^4 + A(x)^7).
RELATED SERIES.
A(x)^4 = 1 + 8*x + 112*x^2 + 1960*x^3 + 38528*x^4 + 813064*x^5 + 17998512*x^6 + 412364968*x^7 + ...
A(x)^7 = 1 + 14*x + 238*x^2 + 4578*x^3 + 95130*x^4 + 2082150*x^5 + 47295990*x^6 + 1104598378*x^7 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = sum(k=0, n, binomial(n, k)*binomial(4*n+3*k+1, n)/(4*n+3*k+1) )}
    for(n=0, 20, print1(a(n), ", "))

Formula

G.f.: A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following.
(1) A(x) = 1 + x*(A(x)^4 + A(x)^7).
(2) a(n) = Sum_{k=0..n} binomial(n, k)*binomial(4*n+3*k+1, n)/(4*n+3*k+1) for n >= 0.

A363309 Expansion of g.f. A(x) = F(x*F(x)^5), where F(x) = 1 + x*F(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 8, 67, 590, 5403, 51034, 494268, 4886794, 49153835, 501631980, 5182767291, 54115252508, 570206217940, 6055948422280, 64765311313944, 696876526961130, 7539151412082315, 81957518070961472, 894826829565106185, 9808173152466891270, 107888887505651377475
Offset: 0

Views

Author

Paul D. Hanna, May 29 2023

Keywords

Comments

Compare the g.f. A(x) = F(x*F(x)^5) to F(-x*F(x)^5) = 1/F(x), where F(x) = 1 + x*F(x)^3 is the g.f. of A001764.
Conjecture: given A(x) = F(x*F(x)^(2*n-1)) where F(x) = 1 + x*F(x)^n, let B(x) = A(x*B(x)^(n-1)), then ((B(x) - 1)/x)^(1/(2*n-1)) is an integer series for n >= 1. Incidentally, the function A(x) = F(x*F(x)^(2*n-1)) is interesting because F(-x*F(x)^(2*n-1)) = 1/F(x) when F(x) = 1 + x*F(x)^n. This sequence illustrates the case for n = 3; for n = 2, see A363308.

Examples

			G.f.: A(x) = 1 + x + 8*x^2 + 67*x^3 + 590*x^4 + 5403*x^5 + 51034*x^6 + 494268*x^7 + 4886794*x^8 + 49153835*x^9 + 501631980*x^10 + ...
such that A(x) = F(x*F(x)^5) where F(x) = 1 + x*F(x)^3 begins
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 + ... + A001764(n)*x^n + ...
RELATED SERIES.
Let B(x) = A(x*B(x)^2) which begins
B(x) = 1 + x + 10*x^2 + 120*x^3 + 1620*x^4 + 23560*x^5 + 360352*x^6 + 5714800*x^7 + 93129840*x^8 + ... + A363310(n)*x^n + ...
then
( (B(x) - 1)/x )^(1/5) = 1 + 2*x + 16*x^2 + 180*x^3 + 2360*x^4 + 33760*x^5 + 510928*x^6 + 8043440*x^7 + ... + A363311(n)*x^n + ...
is an integer series.
		

Crossrefs

Programs

  • PARI
    {a(n) = if(n==0, 1, sum(k=1, n, 5*k* binomial(3*k+1, k) * binomial(3*n+2*k, n-k) / ((3*k+1)*(3*n+2*k)) ) )}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* G.f. A(x) = F(x*F(x)^5), where F(x) = 1 + x*F(x)^3 */
    {a(n) = my(F = 1); for(i=1,n, F = 1 + x*F^3 + x*O(x^n));
    polcoeff( subst(F, x, x*F^5), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined as follows; here, F(x) is the g.f. of A001764.
(1) A(x) = F(x*F(x)^5), where F(x) = 1 + x*F(x)^3.
(2) A(x) = B(x/A(x)^2) where B(x) = A(x*B(x)^2) = F( x*B(x)^2 * F(x*B(x)^2)^5 ) is the g.f. of A363310.
(3) a(n) = Sum_{k=1..n} 5*k* binomial(3*k+1, k) * binomial(3*n+2*k, n-k) / ((3*k+1)*(3*n+2*k)) for n > 0, with a(0) = 1.

A363308 Expansion of g.f. C(x*C(x)^3), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

1, 1, 5, 26, 141, 790, 4542, 26668, 159333, 966038, 5930678, 36801660, 230491410, 1455283172, 9253674120, 59209786992, 380961295445, 2463303690790, 15998687418030, 104325569140156, 682768883525830, 4483232450501492, 29527005540912660, 195006621974036808
Offset: 0

Views

Author

Paul D. Hanna, May 28 2023

Keywords

Comments

Compare the g.f. A(x) = C(x*C(x)^3) to the identity C(-x*C(x)^3) = 1/C(x), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
Conjecture: a(n) is odd iff n is a power of 2 or n = 0.

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 26*x^3 + 141*x^4 + 790*x^5 + 4542*x^6 + 26668*x^7 + 159333*x^8 + 966038*x^9 + 5930678*x^10 + ...
such that A(x) = C(x*C(x)^3), where
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + ... + A000108(n)*x^n + ...
x*C(x)^3 = x + 3*x^2 + 9*x^3 + 28*x^4 + 90*x^5 + ... + A000245(n)*x^n + ...
Note that x*C(x)^3 = (C(x) - 1)*(1-x)/x - 1.
Also, the g.f. of related sequence A033296 begins
B(x) = 1 + x + 6*x^2 + 42*x^3 + 326*x^4 + 2706*x^5 + 23526*x^6 + ...
where A(x) = B(x/A(x)), B(x) = A(x*B(x)) = C(x*B(x)*C(x*B(x))^3).
		

Crossrefs

Cf. A127632, A153294, A033296, A000108 (C(x)), A000245 (x*C(x)^3).

Programs

  • PARI
    {a(n) = if(n==0,1, sum(k=1,n, 3*k* binomial(2*k+1,k) * binomial(2*n+k,n-k) / ((2*k+1)*(2*n+k)) ) )}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* G.f. A(x) = C(x*C(x)^3), where C(x) = 1 + x*C(x)^2 */
    {a(n) = my(C = (1 - sqrt(1 - 4*x +x^2*O(x^n)))/(2*x)); polcoeff( subst(C, x, x*C^3), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined as follows; here, C(x) is the g.f. of the Catalan numbers (A000108).
(1) A(x) = C(x*C(x)^3), where C(x) = (1 - sqrt(1-4*x))/(2*x).
(2) A(x) = B(x/A(x)) where B(x) = A(x*B(x)) = C( x*B(x) * C(x*B(x))^3 ) is the g.f. of A033296.
(3) a(n) = Sum_{k=1..n} 3*k* binomial(2*k+1,k) * binomial(2*n+k,n-k) / ((2*k+1)*(2*n+k)) for n > 0, with a(0) = 1.
D-finite with recurrence 4*n*(n-1)*(21687905*n +56141583)*(n+1)*a(n) +2*n*(n-1) *(43375810*n^2 -6022811713*n +10976463649)*a(n-1) -(n-1) *(15429963345*n^3 -200018809315*n^2 +658353214412*n -632905646028)*a(n-2) +(102558230760*n^4 -1409936457473*n^3 +6909548744112*n^2 -14414518702669*n +10812683474490)*a(n-3) +(-212869593020*n^4 +3377685007909*n^3 -20069314453381*n^2 +52902205420466*n -52146873039204)*a(n-4) +4*(2*n-11) *(10773532140*n^3 -171459615587*n^2 +902576783797*n -1572525214995)*a(n-5) +4*(n-6) *(208500820*n -955419151)*(2*n-11) *(2*n-13)*a(n-6)=0. - R. J. Mathar, Nov 22 2024
Showing 1-3 of 3 results.