cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A363309 Expansion of g.f. A(x) = F(x*F(x)^5), where F(x) = 1 + x*F(x)^3 is the g.f. of A001764.

Original entry on oeis.org

1, 1, 8, 67, 590, 5403, 51034, 494268, 4886794, 49153835, 501631980, 5182767291, 54115252508, 570206217940, 6055948422280, 64765311313944, 696876526961130, 7539151412082315, 81957518070961472, 894826829565106185, 9808173152466891270, 107888887505651377475
Offset: 0

Views

Author

Paul D. Hanna, May 29 2023

Keywords

Comments

Compare the g.f. A(x) = F(x*F(x)^5) to F(-x*F(x)^5) = 1/F(x), where F(x) = 1 + x*F(x)^3 is the g.f. of A001764.
Conjecture: given A(x) = F(x*F(x)^(2*n-1)) where F(x) = 1 + x*F(x)^n, let B(x) = A(x*B(x)^(n-1)), then ((B(x) - 1)/x)^(1/(2*n-1)) is an integer series for n >= 1. Incidentally, the function A(x) = F(x*F(x)^(2*n-1)) is interesting because F(-x*F(x)^(2*n-1)) = 1/F(x) when F(x) = 1 + x*F(x)^n. This sequence illustrates the case for n = 3; for n = 2, see A363308.

Examples

			G.f.: A(x) = 1 + x + 8*x^2 + 67*x^3 + 590*x^4 + 5403*x^5 + 51034*x^6 + 494268*x^7 + 4886794*x^8 + 49153835*x^9 + 501631980*x^10 + ...
such that A(x) = F(x*F(x)^5) where F(x) = 1 + x*F(x)^3 begins
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 + ... + A001764(n)*x^n + ...
RELATED SERIES.
Let B(x) = A(x*B(x)^2) which begins
B(x) = 1 + x + 10*x^2 + 120*x^3 + 1620*x^4 + 23560*x^5 + 360352*x^6 + 5714800*x^7 + 93129840*x^8 + ... + A363310(n)*x^n + ...
then
( (B(x) - 1)/x )^(1/5) = 1 + 2*x + 16*x^2 + 180*x^3 + 2360*x^4 + 33760*x^5 + 510928*x^6 + 8043440*x^7 + ... + A363311(n)*x^n + ...
is an integer series.
		

Crossrefs

Programs

  • PARI
    {a(n) = if(n==0, 1, sum(k=1, n, 5*k* binomial(3*k+1, k) * binomial(3*n+2*k, n-k) / ((3*k+1)*(3*n+2*k)) ) )}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* G.f. A(x) = F(x*F(x)^5), where F(x) = 1 + x*F(x)^3 */
    {a(n) = my(F = 1); for(i=1,n, F = 1 + x*F^3 + x*O(x^n));
    polcoeff( subst(F, x, x*F^5), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined as follows; here, F(x) is the g.f. of A001764.
(1) A(x) = F(x*F(x)^5), where F(x) = 1 + x*F(x)^3.
(2) A(x) = B(x/A(x)^2) where B(x) = A(x*B(x)^2) = F( x*B(x)^2 * F(x*B(x)^2)^5 ) is the g.f. of A363310.
(3) a(n) = Sum_{k=1..n} 5*k* binomial(3*k+1, k) * binomial(3*n+2*k, n-k) / ((3*k+1)*(3*n+2*k)) for n > 0, with a(0) = 1.

A033296 Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis), where each step is (2,1),(1,2) or (1,-1) and start with (1,2).

Original entry on oeis.org

1, 1, 6, 42, 326, 2706, 23526, 211546, 1951494, 18366882, 175674054, 1702686090, 16686795846, 165079509042, 1646340228006, 16534463822010, 167081444125702, 1697551974416706, 17330661859937670, 177699201786231530
Offset: 0

Views

Author

Keywords

Examples

			G.f. A(x) = 1 + x + 6*x^2 + 42*x^3 + 326*x^4 + 2706*x^5 + 23526*x^6 + 211546*x^7 + 1951494*x^8 + 18366882*x^9 + 175674054*x^10 + ...
		

Crossrefs

Programs

  • PARI
    /* G.f. A(x) = (1/x)*Series_Reversion( x/C(x*C(x)^3) ) */
    {a(n) = my(C = (1 - sqrt(1 - 4*x +x^2*O(x^n)))/(2*x)); polcoeff( (1/x)*serreverse(x/subst(C,x,x*C^3)), n)}
    for(n=0,20,print1(a(n),", ")) \\ Paul D. Hanna, May 28 2023

Formula

G.f.: A(x) = 1 + x*D(x)^3, where D(x) is the g.f. of A027307. Also: difference of A027307 and A032349. [Changed formula to include a(0) = 1. - Paul D. Hanna, May 28 2023]
D-finite with recurrence +n*(2*n+1)*a(n) +(-32*n^2+47*n-17)*a(n-1) +2*(55*n^2-223*n+228)*a(n-2) +3*(-4*n^2+33*n-70)*a(n-3) -(2*n-7)*(n-5)*a(n-4)=0. - R. J. Mathar, Jul 24 2022
From Paul D. Hanna, May 28 2023: (Start)
G.f. A(x) = (1/x) * Series_Reversion( x / C(x*C(x)^3) ), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
G.f. A(x) = B(x*A(x)) where B(x) = A(x/B(x)) = C(x*C(x)^3) is the g.f. of A363308, and C(x) is the g.f. of the Catalan numbers (A000108). (End)

A363111 Expansion of g.f. A(x) = F(x*F(x)^7), where F(x) = 1 + x*F(x)^4 is the g.f. of A002293.

Original entry on oeis.org

1, 1, 11, 127, 1547, 19652, 258069, 3481034, 47999915, 674086924, 9612919156, 138878011335, 2028718584989, 29918897595468, 444889269572286, 6663228661354420, 100430376524360459, 1522215623202615036, 23187346871707554564, 354783440893854307244
Offset: 0

Views

Author

Paul D. Hanna, May 30 2023

Keywords

Comments

Compare the g.f. A(x) = F(x*F(x)^7) to F(-x*F(x)^7) = 1/F(x), where F(x) = 1 + x*F(x)^4 is the g.f. of A002293.

Examples

			G.f.: A(x) = 1 + x + 11*x^2 + 127*x^3 + 1547*x^4 + 19652*x^5 + 258069*x^6 + 3481034*x^7 + 47999915*x^8 + 674086924*x^9 + ...
such that A(x) = F(x*F(x)^7) where F(x) = 1 + x*F(x)^4 begins
F(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 + 53820*x^7 + ... + A002293(n)*x^n + ...
RELATED SERIES.
Let B(x) = A(x*B(x)^3) = ( Series_Reversion( x/A(x)^3 )/x )^(1/3) which begins
B(x) = 1 + x + 14*x^2 + 238*x^3 + 4578*x^4 + 95130*x^5 + 2082150*x^6 + 47295990*x^7 + 1104598378*x^8 + ...
then
( (B(x) - 1)/x )^(1/7) = 1 + 2*x + 22*x^2 + 350*x^3 + 6538*x^4 + 133658*x^5 + 2895214*x^6 + 65294502*x^7 + ... + A363304(n)*x^n + ...
is an integer series.
		

Crossrefs

Programs

  • PARI
    {a(n) = if(n==0, 1, sum(k=1, n, 7*k* binomial(4*k+1, k) * binomial(4*n+3*k, n-k) / ((4*k+1)*(4*n+3*k)) ) )}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    /* G.f. A(x) = F(x*F(x)^7), where F(x) = 1 + x*F(x)^4 */
    {a(n) = my(F = 1); for(i=1,n, F = 1 + x*F^4 + x*O(x^n));
    polcoeff( subst(F, x, x*F^7), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined as follows; here, F(x) is the g.f. of A002293.
(1) A(x) = F(x*F(x)^7), where F(x) = 1 + x*F(x)^4.
(2) A(x) = B(x/A(x)^3) where B(x) = A(x*B(x)^3) = F( x*B(x)^3 * F(x*B(x)^3)^7 ).
(3) a(n) = Sum_{k=1..n} 7*k* binomial(4*k+1, k) * binomial(4*n+3*k, n-k) / ((4*k+1)*(4*n+3*k)) for n > 0, with a(0) = 1.
Showing 1-3 of 3 results.