A363197 a(n) is the number of ways the labels 1 to 2^n-1 can be assigned to a perfect binary tree with n levels such that there is an ordering between children and parents and also an ordering between the left and the right child.
1, 1, 10, 343200, 73082837755699200000, 79548797573848497198355214730517854838277265162240000000000
Offset: 1
Keywords
Examples
The 10 variants for a(3) are: 1 1 1 / \ / \ / \ 5 2 4 2 4 2 / \ / \ / \ / \ / \ / \ 7 6 4 3 7 5 6 3 7 6 5 3 . 1 1 1 / \ / \ / \ 4 2 3 2 3 2 / \ / \ / \ / \ / \ / \ 6 5 7 3 5 4 7 6 7 4 6 5 . 1 1 1 / \ / \ / \ 3 2 3 2 3 2 / \ / \ / \ / \ / \ / \ 7 5 6 4 7 6 5 4 6 4 7 5 . 1 / \ 3 2 / \ / \ 6 5 7 4 .
Programs
-
Mathematica
RecurrenceTable[{a[n + 1] == Binomial[2^(n + 1) - 2, 2^n - 1]*2^((n^2 - 3*n)/2)*a[n]^2, a[1] == 1}, a, {n, 1, 6}] (* Amiram Eldar, May 21 2023 *)
-
PARI
a(n) = if(n==0,1,binomial(2^n-2, 2^(n-1)-1)*2^((4 - 5*n + n^2)/2)*a(n-1)^2)
Formula
a(n) = binomial(2^n - 2, 2^(n-1) - 1)*2^((4 - 5*n + n^2)/2)*a(n-1)^2.
a(n) = A076615(2^n - 1) / 2^(n*(n - 1)/2).
Comments