A363229 Decimal expansion of e^(-2*LambertW(-log(2)/4)).
1, 5, 3, 6, 6, 7, 6, 9, 0, 7, 8, 0, 1, 7, 5, 8, 3, 3, 4, 6, 1, 2, 4, 7, 5, 0, 3, 0, 9, 0, 5, 0, 3, 7, 8, 3, 1, 7, 9, 8, 3, 6, 1, 0, 5, 6, 6, 0, 9, 0, 3, 8, 8, 1, 2, 0, 7, 6, 8, 3, 4, 8, 5, 6, 5, 8, 9, 1, 9, 8, 5, 9, 4, 4, 7, 8, 4, 7, 5, 5, 7, 5, 8, 7, 1, 7, 1, 0, 5, 5, 7, 1, 4, 6, 9, 8, 2, 3, 7
Offset: 1
Examples
1.5366769...
Programs
-
Mathematica
RealDigits[E^(-2 ProductLog[-Log[2]/4]),10,100][[1]]
-
PARI
\p 200 exp(-2*lambertw(-log(2)/4))
-
Python
import math; from sympy import LambertW print([i for i in str("%.30f" % math.exp(-2*LambertW(-math.log(2)/4)))]) # Javier Rivera Romeu, May 22 2023
Formula
Equals e^(-2*Sum_{k>=1} ((-k)^(-1+k)*(-log(2)/4)^k/k!)).
Equals e^(t*log(2)/2) where t = (2^(1/4))^(2^(1/4))^(2^(1/4))^(2^(1/4))^... is the infinite power tower over 2^(1/4).
Equals 16*LambertW(-log(2)/4)^2 / log(2)^2. - Vaclav Kotesovec, May 22 2023
Comments