A363238 Number of partitions of n with rank a multiple of 6.
1, 0, 1, 1, 1, 1, 5, 2, 6, 6, 10, 11, 21, 19, 32, 37, 51, 59, 90, 97, 138, 162, 215, 253, 340, 392, 514, 610, 771, 916, 1166, 1367, 1711, 2032, 2503, 2965, 3647, 4293, 5237, 6188, 7469, 8808, 10613, 12459, 14920, 17530, 20862, 24457, 29029, 33924, 40099, 46829, 55101, 64215, 75386
Offset: 1
Keywords
Programs
-
Maple
b:= proc(n, i, c) option remember; `if`(i>n, 0, `if`(i=n, `if`(irem(i-c, 6)=0, 1, 0), b(n-i, i, c+1)+b(n, i+1, c))) end: a:= n-> b(n, 1$2): seq(a(n), n=1..55); # Alois P. Heinz, May 23 2023
-
PARI
my(N=60, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x^k)*(1+x^(6*k))/(1-x^(6*k))))
Formula
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1-x^k) * (1+x^(6*k)) / (1-x^(6*k)).