cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363238 Number of partitions of n with rank a multiple of 6.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 5, 2, 6, 6, 10, 11, 21, 19, 32, 37, 51, 59, 90, 97, 138, 162, 215, 253, 340, 392, 514, 610, 771, 916, 1166, 1367, 1711, 2032, 2503, 2965, 3647, 4293, 5237, 6188, 7469, 8808, 10613, 12459, 14920, 17530, 20862, 24457, 29029, 33924, 40099, 46829, 55101, 64215, 75386
Offset: 1

Views

Author

Seiichi Manyama, May 23 2023

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, c) option remember; `if`(i>n, 0, `if`(i=n,
         `if`(irem(i-c, 6)=0, 1, 0), b(n-i, i, c+1)+b(n, i+1, c)))
        end:
    a:= n-> b(n, 1$2):
    seq(a(n), n=1..55);  # Alois P. Heinz, May 23 2023
  • PARI
    my(N=60, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x^k)*(1+x^(6*k))/(1-x^(6*k))))

Formula

G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1-x^k) * (1+x^(6*k)) / (1-x^(6*k)).