A363239 Number of partitions of n with rank a multiple of 7.
1, 0, 1, 1, 1, 1, 3, 4, 4, 6, 8, 11, 15, 19, 26, 33, 43, 55, 70, 89, 114, 144, 179, 225, 280, 348, 430, 532, 653, 800, 978, 1193, 1449, 1758, 2127, 2569, 3091, 3717, 4455, 5334, 6369, 7596, 9039, 10739, 12734, 15080, 17822, 21039, 24791, 29176, 34277, 40227, 47133, 55165, 64468
Offset: 1
Keywords
Programs
-
Maple
b:= proc(n, i, c) option remember; `if`(i>n, 0, `if`(i=n, `if`(irem(i-c, 7)=0, 1, 0), b(n-i, i, c+1)+b(n, i+1, c))) end: a:= n-> b(n, 1$2): seq(a(n), n=1..55); # Alois P. Heinz, May 23 2023
-
PARI
my(N=60, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2)*(1-x^k)*(1+x^(7*k))/(1-x^(7*k))))
Formula
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2) * (1-x^k) * (1+x^(7*k)) / (1-x^(7*k)).