A363250 Numbers in A363063 arranged in lexicographic order according to ordered prime signature (i.e., multiplicities of prime power factors p^k, written in order of p).
1, 2, 4, 12, 8, 24, 16, 48, 144, 720, 32, 96, 288, 1440, 864, 4320, 21600, 151200, 64, 192, 576, 2880, 1728, 8640, 43200, 302400, 128, 384, 1152, 5760, 3456, 17280, 86400, 604800, 10368, 51840, 259200, 1814400, 256, 768, 2304, 11520, 6912, 34560, 172800, 1209600, 20736, 103680, 518400, 3628800, 62208
Offset: 0
Examples
Table of n, a(n), and multiplicities S(j) written such that Product p(j)^S(j) = a(n). a(n) = A000079(i) is shown in the penultimate column, while a(n) = A347284(k) appears in the last column. n a(n) multiplicities i k ----------------------------------- 0: 1 0 0 1: 2 1 1 1 2: 4 2 2 3: 12 2 1 2 4: 8 3 3 5: 24 3 1 3 6: 16 4 4 7: 48 4 1 8: 144 4 2 9: 720 4 2 1 4 10: 32 5 5 11: 96 5 1 12: 288 5 2 13: 1440 5 2 1 14: 864 5 3 15: 4320 5 3 1 16: 21600 5 3 2 17: 151200 5 3 2 1 5 ... Sequence read as an irregular triangle T(n, k): n\k 1 2 3 4 5 6 7 8 --------------------------------------------------- 0: 1 1: 2 2: 4 12 3: 8 24 4: 16 48 144 720 5: 32 96 288 1440 864 4320 21600 151200 6: 64 192 576 2880 1728 8640 43200 302400 ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..14158 (rows i = 0..30, flattened)
- Michael De Vlieger, Plot p^e | a(n) at (x,y) = (n,e), n = 1..3526, 12X vertical exaggeration
Crossrefs
Programs
-
Mathematica
nn = 12; f[x_] := Times @@ MapIndexed[Prime[First[#2]]^#1 &, x]; {1}~Join~Reap[Do[s = {i}; Sow[2^i]; Set[k, 1]; Do[ If[Prime[k]^s[[-1]] > Prime[k + 1], AppendTo[s, 1]; k++; Sow[f[s]], If[Length[s] == 1, Break[], If[Prime[k - 1]^(s[[-2]]) > Prime[k]^(s[[-1]] + 1), s[[-1]]++; Sow[f[s]], While[And[k > 1, Prime[k - 1]^(s[[-2]]) < Prime[k]^(s[[-1]] + 1)], k--; s = s[[1 ;; k]]]; If[k == 1, Break[], s[[-1]]++; Sow[f[s]] ] ] ] ], {j, Infinity}], {i, nn}]][[-1, -1]]
-
Python
from sympy import nextprime,oo from itertools import islice primes = [2] # global list of first primes def f(pi, ppmax): # Generate numbers with nonincreasing prime-powers <= ppmax, starting at the (pi+1)-st prime. if len(primes) <= pi: primes.append(nextprime(primes[-1])) p0 = primes[pi] if ppmax < p0: yield 1 return pp = 1 while pp <= ppmax: for x in f(pi+1, pp): yield pp*x pp *= p0 def A363250_list(nterms): return list(islice(f(0,oo),nterms)) # Pontus von Brömssen, May 25 2023
Formula
Seen as an irregular triangle, the first term in row i is 2^i, and the last term in row i is A347284(i).
Extensions
Edited by Michael De Vlieger/_Peter Munn_, May 27 2025
Comments