A363260 Number of integer partitions of n with parts disjoint from first differences of parts, meaning no part is the difference of two consecutive parts.
1, 1, 2, 2, 4, 5, 7, 10, 13, 17, 21, 28, 35, 46, 57, 70, 87, 110, 130, 165, 198, 238, 285, 349, 410, 498, 583, 702, 819, 983, 1136, 1353, 1570, 1852, 2137, 2520, 2898, 3390, 3891, 4540, 5191, 6028, 6889, 7951, 9082, 10450, 11884, 13650, 15508, 17728, 20113
Offset: 0
Keywords
Examples
The a(1) = 1 through a(8) = 13 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (111) (22) (32) (33) (43) (44) (31) (41) (51) (52) (53) (1111) (311) (222) (61) (62) (11111) (411) (322) (71) (3111) (331) (332) (111111) (511) (611) (4111) (2222) (31111) (3311) (1111111) (5111) (41111) (311111) (11111111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Intersection[#,-Differences[#]]=={}&]],{n,0,30}]
-
Python
from collections import Counter from sympy.utilities.iterables import partitions def A363260(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), partitions(n,size=True)) if set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023