A363308 Expansion of g.f. C(x*C(x)^3), where C(x) = 1 + x*C(x)^2 is the g.f. of the Catalan numbers (A000108).
1, 1, 5, 26, 141, 790, 4542, 26668, 159333, 966038, 5930678, 36801660, 230491410, 1455283172, 9253674120, 59209786992, 380961295445, 2463303690790, 15998687418030, 104325569140156, 682768883525830, 4483232450501492, 29527005540912660, 195006621974036808
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 5*x^2 + 26*x^3 + 141*x^4 + 790*x^5 + 4542*x^6 + 26668*x^7 + 159333*x^8 + 966038*x^9 + 5930678*x^10 + ... such that A(x) = C(x*C(x)^3), where C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + ... + A000108(n)*x^n + ... x*C(x)^3 = x + 3*x^2 + 9*x^3 + 28*x^4 + 90*x^5 + ... + A000245(n)*x^n + ... Note that x*C(x)^3 = (C(x) - 1)*(1-x)/x - 1. Also, the g.f. of related sequence A033296 begins B(x) = 1 + x + 6*x^2 + 42*x^3 + 326*x^4 + 2706*x^5 + 23526*x^6 + ... where A(x) = B(x/A(x)), B(x) = A(x*B(x)) = C(x*B(x)*C(x*B(x))^3).
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..400
Programs
-
PARI
{a(n) = if(n==0,1, sum(k=1,n, 3*k* binomial(2*k+1,k) * binomial(2*n+k,n-k) / ((2*k+1)*(2*n+k)) ) )} for(n=0, 30, print1(a(n), ", "))
-
PARI
/* G.f. A(x) = C(x*C(x)^3), where C(x) = 1 + x*C(x)^2 */ {a(n) = my(C = (1 - sqrt(1 - 4*x +x^2*O(x^n)))/(2*x)); polcoeff( subst(C, x, x*C^3), n)} for(n=0, 30, print1(a(n), ", "))
Formula
G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined as follows; here, C(x) is the g.f. of the Catalan numbers (A000108).
(1) A(x) = C(x*C(x)^3), where C(x) = (1 - sqrt(1-4*x))/(2*x).
(2) A(x) = B(x/A(x)) where B(x) = A(x*B(x)) = C( x*B(x) * C(x*B(x))^3 ) is the g.f. of A033296.
(3) a(n) = Sum_{k=1..n} 3*k* binomial(2*k+1,k) * binomial(2*n+k,n-k) / ((2*k+1)*(2*n+k)) for n > 0, with a(0) = 1.
D-finite with recurrence 4*n*(n-1)*(21687905*n +56141583)*(n+1)*a(n) +2*n*(n-1) *(43375810*n^2 -6022811713*n +10976463649)*a(n-1) -(n-1) *(15429963345*n^3 -200018809315*n^2 +658353214412*n -632905646028)*a(n-2) +(102558230760*n^4 -1409936457473*n^3 +6909548744112*n^2 -14414518702669*n +10812683474490)*a(n-3) +(-212869593020*n^4 +3377685007909*n^3 -20069314453381*n^2 +52902205420466*n -52146873039204)*a(n-4) +4*(2*n-11) *(10773532140*n^3 -171459615587*n^2 +902576783797*n -1572525214995)*a(n-5) +4*(n-6) *(208500820*n -955419151)*(2*n-11) *(2*n-13)*a(n-6)=0. - R. J. Mathar, Nov 22 2024
Comments