A363349 Array read by antidiagonals: T(n,k) is the number of equivalence classes of n X k binary matrices under permutation of rows and columns and complementation of columns.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 4, 3, 1, 1, 1, 5, 7, 8, 3, 1, 1, 1, 6, 11, 19, 10, 4, 1, 1, 1, 7, 16, 41, 32, 16, 4, 1, 1, 1, 8, 23, 81, 101, 68, 20, 5, 1, 1, 1, 9, 31, 153, 299, 301, 114, 29, 5, 1, 1, 1, 10, 41, 273, 849, 1358, 757, 210, 35, 6, 1
Offset: 0
Examples
Array begins: ====================================================== n/k| 0 1 2 3 4 5 6 7 8 ... ---+-------------------------------------------------- 0 | 1 1 1 1 1 1 1 1 1 ... 1 | 1 1 1 1 1 1 1 1 1 ... 2 | 1 2 3 4 5 6 7 8 9 ... 3 | 1 2 4 7 11 16 23 31 41 ... 4 | 1 3 8 19 41 81 153 273 468 ... 5 | 1 3 10 32 101 299 849 2290 5901 ... 6 | 1 4 16 68 301 1358 6128 27008 114763 ... 7 | 1 4 20 114 757 5567 43534 343656 2645494 ... 8 | 1 5 29 210 1981 23350 319119 4633380 67013431 ... ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325
- M. A. Harrison, On the number of classes of binary matrices, IEEE Trans. Computers, 22 (1973), 1048-1051.
- M. A. Harrison, On the number of classes of binary matrices, IEEE Transactions on Computers, C-22.12 (1973), 1048-1052. (Annotated scanned copy)
Crossrefs
Programs
-
PARI
\\ Compare A028657. permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t)={sum(j=1, #q, gcd(t, q[j]))} T(n, k)={if(n==0, 1, my(s=0); forpart(q=n, my(e=1<
Comments