cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A361089 a(n) = smallest integer x such that Sum_{k = 2..x} 1/(k*log(log(k))) > n.

Original entry on oeis.org

3, 5, 8, 21, 76, 389, 2679, 23969, 269777, 3717613, 61326301, 1188642478, 26651213526, 682263659097, 19720607003199, 637490095320530, 22857266906194526, 902495758030572213, 38993221443197045348, 1833273720522384358862
Offset: 2

Views

Author

Artur Jasinski, Jun 11 2023

Keywords

Comments

Because lim_{x->oo} (Sum_{k=2..x} 1 / (k*log(log(k)))) - li(log(x)) = 2.7977647035208... (see A363078) then a(n) = round(w) where w is the solution of the equation li(log(w)) + 2.7977647035208... = n.

Examples

			a(2) = 3 because Sum_{k=2..3} 1/(k*log(log(k))) = 2.18008755... > 2 and Sum_{k=2..2} 1/(k*log(log(k))) = -1.364208386450... < 2.
a(7) = 389 because Sum_{k=2..389} 1/(k*log(log(k))) = 7.000345... > 7 and Sum_{k=2..388} 1/(k*log(log(k))) = 6.99890560988... < 7.
		

Crossrefs

Programs

  • Mathematica
    (*slow procedure*)
    lim = 2; sum = 0; aa = {}; Do[sum = sum + N[1/(k Log[Log[k]]), 100];
     If[sum >= lim, AppendTo[aa, k]; Print[{lim, sum, k}];
      lim = lim + 1], {k, 2, 269777}];aa
    (*quick procedure *)
    aa = {3}; cons = 2.79776470352080492766050456553352884330850083202326989577856315;
    Do[ww = w /. NSolve[LogIntegral[Log[w]] + cons == n, w];
     AppendTo[aa, Round[ww][[1]]], {n, 3, 21}]; aa

Formula

For n >= 3, a(n) = round(w) where w is the solution of the equation li(log(w)) + 2.7977647035208... = n.

A363078 Decimal expansion of lim_{x->oo} (Sum_{k=2..x} 1 / (k*log(log(k)))) - li(log(x)).

Original entry on oeis.org

2, 7, 9, 7, 7, 6, 4, 7, 0, 3, 5, 2, 0, 8, 0, 4, 9, 2, 7, 6, 6, 0, 5, 0, 4, 5, 6, 5, 5, 3, 3, 5, 2, 8, 8, 4, 3, 3, 0, 8, 5, 0, 0, 8, 3, 2, 0, 2, 3, 2, 6, 9, 8, 9, 5, 7, 7, 8, 5, 6, 3, 1, 5, 0, 0, 5, 0, 6, 4, 3, 2, 8, 9, 3, 6, 2, 4, 5, 4, 5, 9, 4, 8, 3, 6, 8, 6, 8, 2, 5, 4, 8, 1, 8, 2, 9, 5, 4, 1, 9, 2, 5, 5, 0, 8
Offset: 1

Views

Author

Artur Jasinski, Jun 11 2023

Keywords

Comments

Value computed and communicated by Pascal Sebah.
For the smallest integer x such that Sum_{k = 2..x} 1/(k*log(log(k))) > n see A361089.

Examples

			2.7977647035208...
		

Crossrefs

A366249 Decimal expansion of lim_{x->oo} (Sum_{primes p<=x} 1/(p*log(log(p)))) - log(log(log(x))).

Original entry on oeis.org

2, 9, 3, 8, 3, 2, 9, 0, 1
Offset: 1

Views

Author

Artur Jasinski, Oct 05 2023

Keywords

Comments

Value computed and communicated by Pascal Sebah.

Examples

			2.93832901...
		

Crossrefs

Showing 1-3 of 3 results.