cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363398 Triangle read by rows. T(n, k) = [x^k] P(n, x), where P(n, x) = Sum_{k=0..n} 2^(n - k) * Sum_{j=0..k} (x^j * binomial(k, j) * (2*j + 1)^n), (secant case).

Original entry on oeis.org

1, 3, 3, 7, 36, 25, 15, 297, 625, 343, 31, 2106, 10000, 14406, 6561, 63, 13851, 131250, 369754, 413343, 161051, 127, 87480, 1546875, 7529536, 15411789, 14172488, 4826809, 255, 540189, 17109375, 134237509, 444816117, 721025327, 564736653, 170859375
Offset: 0

Views

Author

Peter Luschny, May 31 2023

Keywords

Comments

Here we give an inclusion-exclusion representation of 2^n*Euler(n) (see A122045 and A002436), in A363399 we give such a representation for 2^n*Euler(n, 1) = A155585(n), and in A363400 one for the combined sequences.

Examples

			The triangle T(n, k) starts:
  [0]   1;
  [1]   3,      3;
  [2]   7,     36,       25;
  [3]  15,    297,      625,       343;
  [4]  31,   2106,    10000,     14406,      6561;
  [5]  63,  13851,   131250,    369754,    413343,    161051;
  [6] 127,  87480,  1546875,   7529536,  15411789,  14172488,   4826809;
  [7] 255, 540189, 17109375, 134237509, 444816117, 721025327, 564736653, 170859375;
		

Crossrefs

Cf. A122045 (alternating row sums), A363396 (row sums), A126646 (column 0), A085527 (main diagonal), A141475 (central terms).
Cf. A363399 (tangent case), A363400 (combined case).

Programs

  • Maple
    P := (n, x) -> add(add(x^j*binomial(k, j)*(2*j + 1)^n, j=0..k)*2^(n-k), k=0..n):
    T := (n, k) -> coeff(P(n, x), x, k): seq(seq(T(n, k), k = 0..n), n = 0..7);
  • Mathematica
    (* From Detlef Meya, Oct 04 2023: (Start) *)
    T[n_, k_] := (2*k+1)^n*(2^(n+1) - Sum[Binomial[n+1, j], {j,0,k}]);
    (* Or: *)
    T[n_, k_] := (2*k+1)^n*Binomial[n+1, k+1]*Hypergeometric2F1[1, k-n, k+2, -1];
    Flatten[Table[T[n, k], {n, 0, 7}, {k, 0, n}]]  (* End *)

Formula

Sum_{k=0..n} (-1)^k*T(n, k) = 2^n*Euler(n) = 4^n*Euler(n, 1/2).
(Sum_{k=0..n} (-1)^k*T(n, k)) / 2^n = Euler(n) = 2^n*Euler(n, 1/2) = A122045(n).
Sum_{k=0..2*n} (-1)^k*T(2*n, k) = 4^n*Euler(2*n) = 16^n*Euler(2*n, 1/2) = (-1)^n*A002436(n).
From Detlef Meya, Oct 04 2023: (Start)
T(n, k) = (2*k + 1)^n * binomial(n+1, k+1) * hypergeom([1, k-n], [k+2], -1).
T(n, k) = (2*k + 1)^n * (2^(n + 1) - Sum_{j=0..k} binomial(n+1, j)). (End)