cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A363426 G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(3*x^k) * x^k/k ).

Original entry on oeis.org

1, 1, 3, 30, 840, 68934, 16821865, 12280119400, 26868936914550, 176313989066991255, 3470564614854890465955, 204936840860491674903711726, 36304151491699938200267389259775, 19293550877461959142221066537253871070
Offset: 0

Views

Author

Seiichi Manyama, Jun 01 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (-1)^(k+1)*subst(A, x, 3*x^k)*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = Sum_{k>=0} a(k) * x^k = Product_{k>=0} (1+x^(k+1))^(3^k * a(k)).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * d * 3^(d-1) * a(d-1) ) * a(n-k).

A363427 G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(4*x^k) * x^k/k ).

Original entry on oeis.org

1, 1, 4, 68, 4422, 1136646, 1165077220, 4773325045092, 78210934437541505, 5125710024629047469249, 1343679254641311248179226112, 1408951161809404147369817577873792, 5909570902737024213107077083032728540592
Offset: 0

Views

Author

Seiichi Manyama, Jun 01 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (-1)^(k+1)*subst(A, x, 4*x^k)*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = Sum_{k>=0} a(k) * x^k = Product_{k>=0} (1+x^(k+1))^(4^k * a(k)).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * d * 4^(d-1) * a(d-1) ) * a(n-k).

A363441 G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k) * (2*x)^k/k ).

Original entry on oeis.org

1, 2, 4, 16, 52, 208, 840, 3520, 15008, 65344, 288408, 1288416, 5813744, 26460800, 121333200, 559991712, 2599385536, 12127405952, 56837861376, 267473333120, 1263354463056, 5987210061184, 28461008374480, 135672151034304, 648406644570048
Offset: 0

Views

Author

Seiichi Manyama, Jun 02 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (-1)^(k+1)*subst(A, x, x^k)*(2*x)^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = Sum_{k>=0} a(k) * x^k = Product_{k>=0} (1+2*x^(k+1))^a(k).
a(0) = 1; a(n) = (-1/n) * Sum_{k=1..n} ( Sum_{d|k} d * (-2)^(k/d) * a(d-1) ) * a(n-k).
Showing 1-3 of 3 results.