cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A363425 G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(2*x^k) * x^k/k ).

Original entry on oeis.org

1, 1, 2, 10, 89, 1521, 50300, 3271556, 422093896, 108481853032, 55651639993132, 57043042723263188, 116881250986006852062, 478862542730584327952230, 3923320929876295358082556380, 64283613915707884845087288240332
Offset: 0

Views

Author

Seiichi Manyama, Jun 01 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (-1)^(k+1)*subst(A, x, 2*x^k)*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = Sum_{k>=0} a(k) * x^k = Product_{k>=0} (1+x^(k+1))^(2^k * a(k)).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * d * 2^(d-1) * a(d-1) ) * a(n-k).

A363427 G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(4*x^k) * x^k/k ).

Original entry on oeis.org

1, 1, 4, 68, 4422, 1136646, 1165077220, 4773325045092, 78210934437541505, 5125710024629047469249, 1343679254641311248179226112, 1408951161809404147369817577873792, 5909570902737024213107077083032728540592
Offset: 0

Views

Author

Seiichi Manyama, Jun 01 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (-1)^(k+1)*subst(A, x, 4*x^k)*x^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = Sum_{k>=0} a(k) * x^k = Product_{k>=0} (1+x^(k+1))^(4^k * a(k)).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) * d * 4^(d-1) * a(d-1) ) * a(n-k).

A363442 G.f. satisfies A(x) = exp( Sum_{k>=1} (-1)^(k+1) * A(x^k) * (3*x)^k/k ).

Original entry on oeis.org

1, 3, 9, 54, 270, 1620, 9828, 61884, 397062, 2597508, 17232831, 115722918, 784996434, 5371325217, 37029240315, 256948639344, 1793271890988, 12579466538187, 88645665923244, 627235978623318, 4454619888380355, 31743030458459169, 226890102674671245
Offset: 0

Views

Author

Seiichi Manyama, Jun 02 2023

Keywords

Crossrefs

Programs

  • PARI
    seq(n) = my(A=1); for(i=1, n, A=exp(sum(k=1, i, (-1)^(k+1)*subst(A, x, x^k)*(3*x)^k/k)+x*O(x^n))); Vec(A);

Formula

A(x) = Sum_{k>=0} a(k) * x^k = Product_{k>=0} (1+3*x^(k+1))^a(k).
a(0) = 1; a(n) = (-1/n) * Sum_{k=1..n} ( Sum_{d|k} d * (-3)^(k/d) * a(d-1) ) * a(n-k).
Showing 1-3 of 3 results.