cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363434 Total number of blocks containing only elements of the same parity in all partitions of [n].

Original entry on oeis.org

0, 1, 2, 7, 24, 97, 412, 1969, 9898, 54461, 313944, 1947613, 12603100, 86760255, 620559230, 4682462777, 36586620348, 299664171115, 2534306825064, 22355119509231, 203115201624030, 1917124624702475, 18598998656476220, 186822424157036439, 1925326063016510832
Offset: 0

Views

Author

Alois P. Heinz, Jun 01 2023

Keywords

Examples

			a(3) = 7 = 0 + 1 + 2 + 1 + 3 : 123, 12|3, 13|2, 1|23, 1|2|3.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, e, o, m) option remember; `if`(n=0, e+o,
          (e+m)*b(n-1, o, e, m)+b(n-1, o, e+1, m)+
           `if`(o=0, 0, o*b(n-1, o-1, e, m+1)))
        end:
    a:= n-> b(n, 0$3):
    seq(a(n), n=0..24);
  • Mathematica
    b[n_, e_, o_, m_] := b[n, e, o, m] = If[n == 0, e + o, (e + m)*b[n-1, o, e, m] + b[n - 1, o, e + 1, m] + If[o == 0, 0, o*b[n - 1, o - 1, e, m + 1]]];
    a[n_] := b[n, 0, 0, 0];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Sep 10 2023, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=0..n} k * A124424(n,k).
a(n) = A363452(n) + A363453(n).
a(n) mod 2 = A000035(n).