A363449 Number of noncrossing partitions of the n-set with some pair of singletons {i} and {j} that can be merged into {i,j} and leave the partition a noncrossing-partition.
0, 0, 1, 1, 5, 16, 55, 197, 705, 2563, 9381, 34563, 128029, 476347, 1779107, 6666752, 25054585, 94401460, 356510371, 1349182629, 5115555725, 19429832443, 73916249353, 281613780638, 1074400168957, 4104279704526, 15697542046005, 60106182177517, 230394256650275, 884024296630081, 3395269379129779
Offset: 0
Examples
The 5 noncrossing partitions of the 4-set {1234} with some pair of singletons that can be merged and leave the partition a noncrossing-partition are [{1},{2},{3},{4}], [{12},{3},{4}], [{1},{23},{4}], [{2},{3},{14}], [{1},{2},{34}]. [{1},{23},{4}] can give [{14},{23}].
Links
- Julien Rouyer, Table of n, a(n) for n = 0..87
- Julien Rouyer and A. Ninet, Two New Integer Sequences Related to Crossroads and Catalan Numbers, hal-04281025, 2023. See also arXiv:2311.07181 [math.CO], 2023.
Extensions
Extended by Julien Rouyer, Apr 23 2024
Comments