A363454 Number of partitions of [n] such that the number of blocks containing only odd elements equals the number of blocks containing only even elements and no block contains both odd and even elements.
1, 0, 1, 1, 2, 4, 11, 28, 87, 266, 952, 3381, 13513, 53915, 237113, 1046732, 5016728, 24186664, 125121009, 652084528, 3615047527, 20211789423, 119384499720, 711572380960, 4455637803543, 28162688795697, 186152008588691, 1242276416218540, 8636436319397292
Offset: 0
Keywords
Examples
a(0) = 1: () the empty partition. a(1) = 0. a(2) = 1: 1|2. a(3) = 1: 13|2. a(4) = 2: 13|24, 1|2|3|4. a(5) = 4: 135|24, 13|2|4|5, 15|2|3|4, 1|2|35|4. a(6) = 11: 135|246, 13|24|5|6, 13|26|4|5, 13|2|46|5, 15|24|3|6, 1|24|35|6, 15|26|3|4, 15|2|3|46, 1|26|35|4, 1|2|35|46, 1|2|3|4|5|6. a(7) = 28: 1357|246, 135|24|6|7, 137|24|5|6, 13|24|57|6, 135|26|4|7, 135|2|46|7, 137|26|4|5, 13|26|4|57, 137|2|46|5, 13|2|46|57, 13|2|4|5|6|7, 157|24|3|6, 15|24|37|6, 17|24|35|6, 1|24|357|6, 157|26|3|4, 15|26|37|4, 157|2|3|46, 15|2|37|46, 15|2|3|4|6|7, 17|26|35|4, 1|26|357|4, 17|2|35|46, 1|2|357|46, 1|2|35|4|6|7, 17|2|3|4|5|6, 1|2|37|4|5|6, 1|2|3|4|57|6.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..650
- Wikipedia, Partition of a set
Programs
-
Maple
a:= n-> (h-> add(Stirling2(h, k)*Stirling2(n-h, k), k=0..h))(iquo(n, 2)): seq(a(n), n=0..40); # second Maple program: b:= proc(n, x, y) option remember; `if`(abs(x-y)>n, 0, `if`(n=0, 1, `if`(x>0, b(n-1, y, x)*x, 0)+b(n-1, y, x+1))) end: a:= n-> b(n, 0$2): seq(a(n), n=0..40);
Formula
a(n) = Sum_{k=0..floor(n/2)} Stirling2(floor(n/2),k) * Stirling2(ceiling(n/2),k).
a(2n) = A047797(n).