cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363499 a(n) = Sum_{k=0..n} floor(sqrt(k))^5.

Original entry on oeis.org

0, 1, 2, 3, 35, 67, 99, 131, 163, 406, 649, 892, 1135, 1378, 1621, 1864, 2888, 3912, 4936, 5960, 6984, 8008, 9032, 10056, 11080, 14205, 17330, 20455, 23580, 26705, 29830, 32955, 36080, 39205, 42330, 45455, 53231, 61007, 68783, 76559, 84335, 92111, 99887
Offset: 0

Views

Author

Hans J. H. Tuenter, Jun 05 2023

Keywords

Comments

Partial sums of the fifth powers of the terms of A000196.

Crossrefs

Sums of powers of A000196: A022554 (1st), A174060 (2nd), A363497 (3rd), A363498 (4th), this sequence (5th).

Programs

  • Mathematica
    Table[(n + 1) #^5 - (1/84) # (# + 1)*(2 # + 1)*(3 # - 1)*(10 #^3 - 7 # + 4) &[Floor@ Sqrt[n]], {n, 0, 42}] (* Michael De Vlieger, Jun 10 2023 *)
  • Python
    from math import isqrt
    def A363499(n): return (m:=isqrt(n))**5 *(n+1) - (m*(m+1)*(2*m+1)*(3*m-1)*(10*m**3-7*m+4))//84 # Karl-Heinz Hofmann, Jul 17 2023

Formula

a(n) = (n+1)*m^5 - (1/84)*m*(m+1)*(2*m+1)*(3*m-1)*(10*m^3-7*m+4), where m = floor(sqrt(n)).