A363527 Number of integer partitions of n with weighted sum 3*n.
1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 3, 4, 4, 6, 8, 7, 10, 13, 13, 21, 25, 24, 37, 39, 40, 58, 63, 72, 94, 106, 118, 144, 165, 181, 224, 256, 277, 341, 387, 417, 504, 560, 615, 743, 818, 899, 1066, 1171, 1285, 1502, 1655, 1819, 2108, 2315, 2547, 2915
Offset: 0
Keywords
Examples
The partition (2,2,1,1,1,1) has sum 8 and weighted sum 24 so is counted under a(8). The a(13) = 1 through a(18) = 8 partitions: (332221) (333221) (33333) (442222) (443222) (443331) (4322111) (522222) (5322211) (4433111) (444222) (71111111) (4332111) (55111111) (5332211) (533322) (63111111) (63211111) (55211111) (4443111) (63311111) (7222221) (72221111) (55311111) (64221111) (A11111111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Total[Accumulate[Reverse[#]]]==3n&]],{n,0,30}]
Comments