A231429
Number of partitions of 2n into distinct parts < n.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 2, 4, 8, 14, 22, 35, 53, 78, 113, 160, 222, 306, 416, 558, 743, 980, 1281, 1665, 2149, 2755, 3514, 4458, 5626, 7070, 8846, 11020, 13680, 16920, 20852, 25618, 31375, 38309, 46649, 56651, 68616, 82908, 99940, 120192, 144238, 172730, 206425
Offset: 0
a(5) = #{4+3+2+1} = 1;
a(6) = #{5+4+3, 5+4+2+1} = 2;
a(7) = #{6+5+3, 6+5+2+1, 6+4+3+1, 5+4+3+2} = 4;
a(8) = #{7+6+3, 7+6+2+1, 7+6+3, 7+5+3+1, 7+4+3+2, 6+5+4+1, 6+5+3+2, 6+4+3+2+1} = 8;
a(9) = #{8+7+3, 8+7+2+1, 8+6+4, 8+6+3+1, 8+5+4+1, 8+5+3+2, 8+4+3+2+1, 7+6+5, 7+6+4+1, 7+6+3+2, 7+5+4+2, 7+5+3+2+1, 6+5+4+3, 6+5+4+2+1} = 14.
A053632 counts compositions by weighted sum.
-
a231429 n = p [1..n-1] (2*n) where
p _ 0 = 1
p [] _ = 0
p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
-
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Total[Accumulate[#]]==3n&]],{n,0,15}] (* Gus Wiseman, Jun 17 2023 *)
A363531
Heinz numbers of integer partitions such that 3*(sum) = (reverse-weighted sum).
Original entry on oeis.org
1, 32, 144, 216, 243, 672, 1008, 1350, 2176, 2250, 2520, 2673, 3125, 3969, 4160, 4200, 5940, 6240, 6615, 7344, 7424, 7744, 8262, 9261, 9800, 9900, 10400, 11616, 12250, 12312, 12375, 13104, 13720, 14720, 14742, 16767, 16807, 17150, 19360, 21840, 22080, 23100
Offset: 1
The terms together with their prime indices begin:
1: {}
32: {1,1,1,1,1}
144: {1,1,1,1,2,2}
216: {1,1,1,2,2,2}
243: {2,2,2,2,2}
672: {1,1,1,1,1,2,4}
1008: {1,1,1,1,2,2,4}
1350: {1,2,2,2,3,3}
2176: {1,1,1,1,1,1,1,7}
2250: {1,2,2,3,3,3}
2520: {1,1,1,2,2,3,4}
2673: {2,2,2,2,2,5}
3125: {3,3,3,3,3}
3969: {2,2,2,2,4,4}
4160: {1,1,1,1,1,1,3,6}
These partitions are counted by
A363526.
A053632 counts compositions by weighted sum.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000041,
A000720,
A001221,
A046660,
A106529,
A118914,
A124010,
A181819,
A215366,
A359362,
A359755.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],3*Total[prix[#]]==Total[Accumulate[prix[#]]]&]
A363526
Number of integer partitions of n with reverse-weighted sum 3*n.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 4, 3, 2, 4, 4, 4, 5, 5, 4, 7, 7, 5, 8, 7, 6, 11, 9, 8, 11, 10, 10, 13, 12, 11, 15, 15, 12, 17, 16, 14, 20, 18, 16, 22, 20, 19, 24, 22, 20, 27, 26, 23, 29, 27, 25, 33, 30, 28, 35, 33, 31, 38, 36, 33, 41, 40
Offset: 0
The partition (6,4,4,1) has sum 15 and reverse-weighted sum 45 so is counted under a(15).
The a(n) partitions for n = {5, 10, 15, 16, 21, 24}:
(1,1,1,1,1) (4,3,2,1) (6,4,4,1) (6,5,4,1) (8,6,6,1) (9,7,7,1)
(2,2,2,2,2) (6,5,2,2) (6,6,2,2) (8,7,4,2) (9,8,5,2)
(7,3,3,2) (7,4,3,2) (9,5,5,2) (9,9,3,3)
(3,3,3,3,3) (9,6,3,3) (10,6,6,2)
(10,4,4,3) (10,7,4,3)
(11,5,5,3)
(12,4,4,4)
Positions of terms with omega > 4 appear to be
A079998.
The version for compositions is
A231429.
The non-reverse version is
A363527.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000016,
A008284,
A067538,
A222855,
A222970,
A359755,
A360672,
A360675,
A362559,
A362560,
A363525,
A363528.
-
Table[Length[Select[IntegerPartitions[n],Total[Accumulate[#]]==3n&]],{n,0,30}]
A363530
Heinz numbers of integer partitions such that 3*(sum) = (weighted sum).
Original entry on oeis.org
1, 32, 40, 60, 100, 126, 210, 243, 294, 351, 550, 585, 770, 819, 1210, 1274, 1275, 1287, 1521, 1785, 2002, 2366, 2793, 2805, 2875, 3125, 3315, 4025, 4114, 4335, 4389, 4862, 5187, 6325, 6358, 6422, 6783, 7105, 7475, 7581, 8349, 8398, 9386, 9775, 9867, 10925
Offset: 1
The terms together with their prime indices begin:
1: {}
32: {1,1,1,1,1}
40: {1,1,1,3}
60: {1,1,2,3}
100: {1,1,3,3}
126: {1,2,2,4}
210: {1,2,3,4}
243: {2,2,2,2,2}
294: {1,2,4,4}
351: {2,2,2,6}
550: {1,3,3,5}
585: {2,2,3,6}
770: {1,3,4,5}
819: {2,2,4,6}
These partitions are counted by
A363527.
A053632 counts compositions by weighted sum.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000041,
A000720,
A001221,
A046660,
A106529,
A118914,
A124010,
A181819,
A215366,
A359362,
A359755.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],3*Total[prix[#]]==Total[Accumulate[Reverse[prix[#]]]]&]
A363525
Number of integer partitions of n with weighted sum divisible by reverse-weighted sum.
Original entry on oeis.org
1, 2, 2, 3, 2, 4, 2, 4, 5, 5, 3, 10, 4, 7, 13, 10, 8, 29, 10, 18, 39, 20, 20, 70, 29, 40, 105, 65, 55, 166, 73, 132, 242, 141, 129, 476, 183, 248, 580, 487, 312, 984, 422, 868, 1345, 825, 724, 2709, 949, 1505, 2756, 2902, 1611, 4664, 2289, 4942, 5828, 4278
Offset: 1
The partition (6,5,4,3,2,1,1,1,1) has weighted sum 80, reverse 160, so is counted under a(24).
The a(n) partitions for n = 1, 2, 4, 6, 9, 12, 14 (A..E = 10-14):
1 2 4 6 9 C E
11 22 33 333 66 77
1111 222 711 444 65111
111111 6111 921 73211
111111111 3333 2222222
7311 71111111
63111 11111111111111
222222
621111
111111111111
The case of equality (and reciprocal version) is
A000005.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000016,
A008284,
A067538,
A222855,
A222970,
A358137,
A359755,
A362558,
A362559,
A362560,
A363527.
-
Table[Length[Select[IntegerPartitions[n], Divisible[Total[Accumulate[#]], Total[Accumulate[Reverse[#]]]]&]],{n,30}]
Showing 1-5 of 5 results.
Comments