cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A231429 Number of partitions of 2n into distinct parts < n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 2, 4, 8, 14, 22, 35, 53, 78, 113, 160, 222, 306, 416, 558, 743, 980, 1281, 1665, 2149, 2755, 3514, 4458, 5626, 7070, 8846, 11020, 13680, 16920, 20852, 25618, 31375, 38309, 46649, 56651, 68616, 82908, 99940, 120192, 144238, 172730, 206425
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 14 2013

Keywords

Comments

From Gus Wiseman, Jun 17 2023: (Start)
Also the number of integer compositions of n with weighted sum 3*n, where the weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i * y_i. The a(0) = 1 through a(9) = 14 compositions are:
() . . . . (11111) (3111) (3211) (3311) (3411)
(11211) (11311) (4121) (4221)
(12121) (11411) (5112)
(21112) (12221) (11511)
(13112) (12321)
(21131) (13131)
(21212) (13212)
(111122) (21231)
(21312)
(22122)
(31113)
(111141)
(111222)
(112113)
For partitions we have A363527, ranks A363531. For reversed partitions we have A363526, ranks A363530.
(End)

Examples

			a(5) = #{4+3+2+1} = 1;
a(6) = #{5+4+3, 5+4+2+1} = 2;
a(7) = #{6+5+3, 6+5+2+1, 6+4+3+1, 5+4+3+2} = 4;
a(8) = #{7+6+3, 7+6+2+1, 7+6+3, 7+5+3+1, 7+4+3+2, 6+5+4+1, 6+5+3+2, 6+4+3+2+1} = 8;
a(9) = #{8+7+3, 8+7+2+1, 8+6+4, 8+6+3+1, 8+5+4+1, 8+5+3+2, 8+4+3+2+1, 7+6+5, 7+6+4+1, 7+6+3+2, 7+5+4+2, 7+5+3+2+1, 6+5+4+3, 6+5+4+2+1} = 14.
		

Crossrefs

A000041 counts integer partitions, strict A000009.
A053632 counts compositions by weighted sum.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, reverse A318283.
A320387 counts multisets by weighted sum, zero-based A359678.

Programs

  • Haskell
    a231429 n = p [1..n-1] (2*n) where
       p _  0 = 1
       p [] _ = 0
       p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], Total[Accumulate[#]]==3n&]],{n,0,15}] (* Gus Wiseman, Jun 17 2023 *)

A363531 Heinz numbers of integer partitions such that 3*(sum) = (reverse-weighted sum).

Original entry on oeis.org

1, 32, 144, 216, 243, 672, 1008, 1350, 2176, 2250, 2520, 2673, 3125, 3969, 4160, 4200, 5940, 6240, 6615, 7344, 7424, 7744, 8262, 9261, 9800, 9900, 10400, 11616, 12250, 12312, 12375, 13104, 13720, 14720, 14742, 16767, 16807, 17150, 19360, 21840, 22080, 23100
Offset: 1

Views

Author

Gus Wiseman, Jun 12 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. The reverse-weighted sum is the weighted sum of the reverse, also the sum of partial sums. For example, the weighted sum of (4,2,2,1) is 1*4 + 2*2 + 3*2 + 4*1 = 18 and the reverse-weighted sum is 4*4 + 3*2 + 2*2 + 1*1 = 27.

Examples

			The terms together with their prime indices begin:
      1: {}
     32: {1,1,1,1,1}
    144: {1,1,1,1,2,2}
    216: {1,1,1,2,2,2}
    243: {2,2,2,2,2}
    672: {1,1,1,1,1,2,4}
   1008: {1,1,1,1,2,2,4}
   1350: {1,2,2,2,3,3}
   2176: {1,1,1,1,1,1,1,7}
   2250: {1,2,2,3,3,3}
   2520: {1,1,1,2,2,3,4}
   2673: {2,2,2,2,2,5}
   3125: {3,3,3,3,3}
   3969: {2,2,2,2,4,4}
   4160: {1,1,1,1,1,1,3,6}
		

Crossrefs

These partitions are counted by A363526.
The non-reverse version is A363530, counted by A363527.
A053632 counts compositions by weighted sum.
A055396 gives minimum prime index, maximum A061395.
A112798 lists prime indices, length A001222, sum A056239.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, row-sums of A359361.
A318283 gives weighted sum of reversed prime indices, row-sums of A358136.
A320387 counts multisets by weighted sum, zero-based A359678.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],3*Total[prix[#]]==Total[Accumulate[prix[#]]]&]

Formula

A056239(a(n)) = A318283(a(n))/3.

A363526 Number of integer partitions of n with reverse-weighted sum 3*n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 4, 3, 2, 4, 4, 4, 5, 5, 4, 7, 7, 5, 8, 7, 6, 11, 9, 8, 11, 10, 10, 13, 12, 11, 15, 15, 12, 17, 16, 14, 20, 18, 16, 22, 20, 19, 24, 22, 20, 27, 26, 23, 29, 27, 25, 33, 30, 28, 35, 33, 31, 38, 36, 33, 41, 40
Offset: 0

Views

Author

Gus Wiseman, Jun 10 2023

Keywords

Comments

Are the partitions counted all of length 4 or 5?
The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. The reverse-weighted sum is the weighted sum of the reverse, also the sum of partial sums. For example, the weighted sum of (4,2,2,1) is 1*4 + 2*2 + 3*2 + 4*1 = 18 and the reverse-weighted sum is 4*4 + 3*2 + 2*2 + 1*1 = 27.

Examples

			The partition (6,4,4,1) has sum 15 and reverse-weighted sum 45 so is counted under a(15).
The a(n) partitions for n = {5, 10, 15, 16, 21, 24}:
  (1,1,1,1,1)  (4,3,2,1)    (6,4,4,1)    (6,5,4,1)  (8,6,6,1)   (9,7,7,1)
               (2,2,2,2,2)  (6,5,2,2)    (6,6,2,2)  (8,7,4,2)   (9,8,5,2)
                            (7,3,3,2)    (7,4,3,2)  (9,5,5,2)   (9,9,3,3)
                            (3,3,3,3,3)             (9,6,3,3)   (10,6,6,2)
                                                    (10,4,4,3)  (10,7,4,3)
                                                                (11,5,5,3)
                                                                (12,4,4,4)
		

Crossrefs

Positions of terms with omega > 4 appear to be A079998.
The version for compositions is A231429.
The non-reverse version is A363527.
These partitions have ranks A363530, reverse A363531.
A000041 counts integer partitions, strict A000009.
A053632 counts compositions by weighted sum, rank statistic A029931/A359042.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, row-sums of A359361.
A318283 gives weighted sum of reversed prime indices, row-sums of A358136.
A320387 counts multisets by weighted sum, zero-based A359678.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Total[Accumulate[#]]==3n&]],{n,0,30}]

A363530 Heinz numbers of integer partitions such that 3*(sum) = (weighted sum).

Original entry on oeis.org

1, 32, 40, 60, 100, 126, 210, 243, 294, 351, 550, 585, 770, 819, 1210, 1274, 1275, 1287, 1521, 1785, 2002, 2366, 2793, 2805, 2875, 3125, 3315, 4025, 4114, 4335, 4389, 4862, 5187, 6325, 6358, 6422, 6783, 7105, 7475, 7581, 8349, 8398, 9386, 9775, 9867, 10925
Offset: 1

Views

Author

Gus Wiseman, Jun 12 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. For example, the weighted sum of (4,2,2,1) is 1*4 + 2*2 + 3*2 + 4*1 = 18.

Examples

			The terms together with their prime indices begin:
      1: {}
     32: {1,1,1,1,1}
     40: {1,1,1,3}
     60: {1,1,2,3}
    100: {1,1,3,3}
    126: {1,2,2,4}
    210: {1,2,3,4}
    243: {2,2,2,2,2}
    294: {1,2,4,4}
    351: {2,2,2,6}
    550: {1,3,3,5}
    585: {2,2,3,6}
    770: {1,3,4,5}
    819: {2,2,4,6}
		

Crossrefs

These partitions are counted by A363527.
The reverse version is A363531, counted by A363526.
A053632 counts compositions by weighted sum.
A055396 gives minimum prime index, maximum A061395.
A112798 lists prime indices, length A001222, sum A056239.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, row-sums of A359361.
A318283 gives weighted sum of reversed prime indices, row-sums of A358136.
A320387 counts multisets by weighted sum, zero-based A359678.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],3*Total[prix[#]]==Total[Accumulate[Reverse[prix[#]]]]&]

Formula

A056239(a(n)) = A304818(a(n))/3.

A363525 Number of integer partitions of n with weighted sum divisible by reverse-weighted sum.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 5, 5, 3, 10, 4, 7, 13, 10, 8, 29, 10, 18, 39, 20, 20, 70, 29, 40, 105, 65, 55, 166, 73, 132, 242, 141, 129, 476, 183, 248, 580, 487, 312, 984, 422, 868, 1345, 825, 724, 2709, 949, 1505, 2756, 2902, 1611, 4664, 2289, 4942, 5828, 4278
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2023

Keywords

Comments

The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. This is also the sum of partial sums of the reverse.

Examples

			The partition (6,5,4,3,2,1,1,1,1) has weighted sum 80, reverse 160, so is counted under a(24).
The a(n) partitions for n = 1, 2, 4, 6, 9, 12, 14 (A..E = 10-14):
  1  2   4     6       9          C             E
     11  22    33      333        66            77
         1111  222     711        444           65111
               111111  6111       921           73211
                       111111111  3333          2222222
                                  7311          71111111
                                  63111         11111111111111
                                  222222
                                  621111
                                  111111111111
		

Crossrefs

The case of equality (and reciprocal version) is A000005.
The strict case is A363528.
A000041 counts integer partitions, strict A000009.
A053632 counts compositions by weighted sum, rank statistic A029931/A359042.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, row-sums of A359361.
A318283 gives weighted sum of reversed prime indices, row-sums of A358136.
A320387 counts multisets by weighted sum, zero-based A359678.
A363526 = partitions with weighted sum 3n, ranks A363530, reverse A363531.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Divisible[Total[Accumulate[#]], Total[Accumulate[Reverse[#]]]]&]],{n,30}]
Showing 1-5 of 5 results.