A182616
Number of partitions of 2n that contain odd parts.
Original entry on oeis.org
0, 1, 3, 8, 17, 35, 66, 120, 209, 355, 585, 946, 1498, 2335, 3583, 5428, 8118, 12013, 17592, 25525, 36711, 52382, 74173, 104303, 145698, 202268, 279153, 383145, 523105, 710655, 960863, 1293314, 1733281, 2313377, 3075425, 4073085, 5374806, 7067863, 9263076
Offset: 0
For n=3 the partitions of 2n are
6 ....................... does not contains odd parts
3 + 3 ................... contains odd parts ........... *
4 + 2 ................... does not contains odd parts
2 + 2 + 2 ............... does not contains odd parts
5 + 1 ................... contains odd parts ........... *
3 + 2 + 1 ............... contains odd parts ........... *
4 + 1 + 1 ............... contains odd parts ........... *
2 + 2 + 1 + 1 ........... contains odd parts ........... *
3 + 1 + 1 + 1 ........... contains odd parts ........... *
2 + 1 + 1 + 1 + 1 ....... contains odd parts ........... *
1 + 1 + 1 + 1 + 1 + 1 ... contains odd parts ........... *
There are 8 partitions of 2n that contain odd parts.
Also p(2n)-p(n) = p(6)-p(3) = 11-3 = 8, where p(n) is the number of partitions of n, so a(3)=8.
From _Gus Wiseman_, Oct 18 2023: (Start)
For n > 0, also the number of integer partitions of 2n that do not contain n, ranked by A366321. For example, the a(1) = 1 through a(4) = 17 partitions are:
(2) (4) (6) (8)
(31) (42) (53)
(1111) (51) (62)
(222) (71)
(411) (332)
(2211) (521)
(21111) (611)
(111111) (2222)
(3221)
(3311)
(5111)
(22211)
(32111)
(221111)
(311111)
(2111111)
(11111111)
(End)
These partitions have ranks
A366530.
A006477 counts partitions with at least one odd and even part, ranks
A366532.
-
with(combinat): a:= n-> numbpart(2*n) -numbpart(n): seq(a(n), n=0..35);
-
Table[Length[Select[IntegerPartitions[2n],n>0&&FreeQ[#,n]&]],{n,0,15}] (* Gus Wiseman, Oct 11 2023 *)
Table[Length[Select[IntegerPartitions[2n],Or@@OddQ/@#&]],{n,0,15}] (* Gus Wiseman, Oct 11 2023 *)
A367094
Irregular triangle read by rows with trailing zeros removed where T(n,k) is the number of integer partitions of 2n whose number of submultisets summing to n is k.
Original entry on oeis.org
0, 1, 1, 1, 2, 2, 1, 5, 3, 3, 8, 4, 9, 1, 17, 6, 16, 1, 2, 24, 7, 33, 4, 9, 46, 11, 52, 3, 18, 1, 4, 64, 12, 91, 6, 38, 3, 15, 1, 1, 107, 17, 138, 9, 68, 2, 28, 2, 12, 0, 2, 147, 19, 219, 12, 117, 6, 56, 3, 34, 2, 9, 0, 3
Offset: 0
The partition (3,2,2,1) has two submultisets summing to 4, namely {2,2} and {1,3}, so it is counted under T(4,2).
The partition (2,2,1,1,1,1) has three submultisets summing to 4, namely {1,1,1,1}, {1,1,2}, and {2,2}, so it is counted under T(4,3).
Triangle begins:
0 1
1 1
2 2 1
5 3 3
8 4 9 1
17 6 16 1 2
24 7 33 4 9
46 11 52 3 18 1 4
64 12 91 6 38 3 15 1 1
107 17 138 9 68 2 28 2 12 0 2
147 19 219 12 117 6 56 3 34 2 9 0 3
Row n = 4 counts the following partitions:
(8) (44) (431) (221111)
(71) (3311) (422)
(62) (2222) (4211)
(611) (11111111) (41111)
(53) (3221)
(521) (32111)
(5111) (311111)
(332) (22211)
(2111111)
The corresponding rank statistic is
A357879 (without empty rows).
A182616 counts partitions of 2n with at least one odd part, ranks
A366530.
A365543 counts partitions of n with a submultiset summing to k.
-
t=Table[Length[Select[IntegerPartitions[2n], Count[Total/@Union[Subsets[#]],n]==k&]], {n,0,5}, {k,0,1+PartitionsP[n]}];
Table[NestWhile[Most,t[[i]],Last[#]==0&], {i,Length[t]}]
A365828
Number of strict integer partitions of 2n not containing n.
Original entry on oeis.org
1, 1, 2, 3, 5, 8, 12, 18, 27, 39, 55, 78, 108, 148, 201, 270, 359, 475, 623, 811, 1050, 1351, 1728, 2201, 2789, 3517, 4418, 5527, 6887, 8553, 10585, 13055, 16055, 19685, 24065, 29343, 35685, 43287, 52387, 63253, 76200, 91605, 109897, 131575, 157231, 187539
Offset: 0
The a(0) = 1 through a(6) = 12 strict partitions:
() (2) (4) (6) (8) (10) (12)
(3,1) (4,2) (5,3) (6,4) (7,5)
(5,1) (6,2) (7,3) (8,4)
(7,1) (8,2) (9,3)
(5,2,1) (9,1) (10,2)
(6,3,1) (11,1)
(7,2,1) (5,4,3)
(4,3,2,1) (7,3,2)
(7,4,1)
(8,3,1)
(9,2,1)
(5,4,2,1)
The complement is counted by
A111133.
A000009 counts strict integer partitions.
A046663 counts partitions with no submultiset summing to k, strict
A365663.
-
Table[Length[Select[IntegerPartitions[2n],UnsameQ@@#&&FreeQ[#,n]&]],{n,0,30}]
A363526
Number of integer partitions of n with reverse-weighted sum 3*n.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 4, 3, 2, 4, 4, 4, 5, 5, 4, 7, 7, 5, 8, 7, 6, 11, 9, 8, 11, 10, 10, 13, 12, 11, 15, 15, 12, 17, 16, 14, 20, 18, 16, 22, 20, 19, 24, 22, 20, 27, 26, 23, 29, 27, 25, 33, 30, 28, 35, 33, 31, 38, 36, 33, 41, 40
Offset: 0
The partition (6,4,4,1) has sum 15 and reverse-weighted sum 45 so is counted under a(15).
The a(n) partitions for n = {5, 10, 15, 16, 21, 24}:
(1,1,1,1,1) (4,3,2,1) (6,4,4,1) (6,5,4,1) (8,6,6,1) (9,7,7,1)
(2,2,2,2,2) (6,5,2,2) (6,6,2,2) (8,7,4,2) (9,8,5,2)
(7,3,3,2) (7,4,3,2) (9,5,5,2) (9,9,3,3)
(3,3,3,3,3) (9,6,3,3) (10,6,6,2)
(10,4,4,3) (10,7,4,3)
(11,5,5,3)
(12,4,4,4)
Positions of terms with omega > 4 appear to be
A079998.
The version for compositions is
A231429.
The non-reverse version is
A363527.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000016,
A008284,
A067538,
A222855,
A222970,
A359755,
A360672,
A360675,
A362559,
A362560,
A363525,
A363528.
-
Table[Length[Select[IntegerPartitions[n],Total[Accumulate[#]]==3n&]],{n,0,30}]
A363527
Number of integer partitions of n with weighted sum 3*n.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 3, 4, 4, 6, 8, 7, 10, 13, 13, 21, 25, 24, 37, 39, 40, 58, 63, 72, 94, 106, 118, 144, 165, 181, 224, 256, 277, 341, 387, 417, 504, 560, 615, 743, 818, 899, 1066, 1171, 1285, 1502, 1655, 1819, 2108, 2315, 2547, 2915
Offset: 0
The partition (2,2,1,1,1,1) has sum 8 and weighted sum 24 so is counted under a(8).
The a(13) = 1 through a(18) = 8 partitions:
(332221) (333221) (33333) (442222) (443222) (443331)
(4322111) (522222) (5322211) (4433111) (444222)
(71111111) (4332111) (55111111) (5332211) (533322)
(63111111) (63211111) (55211111) (4443111)
(63311111) (7222221)
(72221111) (55311111)
(64221111)
(A11111111)
The version for compositions is
A231429.
These partitions have ranks
A363531.
A318283 gives weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A000016,
A008284,
A067538,
A222855,
A222970,
A359755,
A360672,
A360675,
A362559,
A362560,
A363525,
A363528,
A363532.
-
Table[Length[Select[IntegerPartitions[n],Total[Accumulate[Reverse[#]]]==3n&]],{n,0,30}]
A209815
Number of partitions of 2n in which every part is
Original entry on oeis.org
0, 1, 4, 10, 23, 47, 90, 164, 288, 488, 807, 1303, 2063, 3210, 4920, 7434, 11098, 16380, 23928, 34624, 49668, 70667, 99795, 139935, 194930, 269857, 371413, 508363, 692195, 937838, 1264685, 1697810, 2269557, 3021462, 4006812, 5293650, 6968730, 9142306, 11954194
Offset: 1
The 4 partitions of 6 with parts <3:
2+2+2, 2+2+1+1, 2+1+1+1+1, 1+1+1+1+1+1.
Matching partitions of 2 into rationals as described:
2/3 + 2/3 + 2/3
2/3 + 2/3 + 1/3 + 1/3
2/3 + 1/3 + 1/3 + 1/3 + 1/3
1/3 + 1/3 + 1/3 + 1/3 + 1/3 + 1/3.
-
a209815 n = p [1..n-1] (2*n) where
p _ 0 = 1
p [] _ = 0
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Nov 14 2013
-
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
a:= n-> b(2*n, n-1):
seq(a(n), n=1..50); # Alois P. Heinz, Jul 09 2012
-
f[n_] := Length[Select[IntegerPartitions[2 n], First[#] <= n - 1 &]]; Table[f[n], {n, 1, 34}] (* A209815 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := b[2*n, n-1]; Table [a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 28 2015, after Alois P. Heinz *)
A366527
Number of integer partitions of 2n containing at least one even part.
Original entry on oeis.org
0, 1, 3, 7, 16, 32, 62, 113, 199, 339, 563, 913, 1453, 2271, 3496, 5308, 7959, 11798, 17309, 25151, 36225, 51748, 73359, 103254, 144363, 200568, 277007, 380437, 519715, 706412, 955587, 1286762, 1725186, 2303388, 3063159, 4058041, 5356431, 7045454, 9235841
Offset: 0
The a(1) = 1 through a(4) = 16 partitions:
(2) (4) (6) (8)
(22) (42) (44)
(211) (222) (62)
(321) (332)
(411) (422)
(2211) (431)
(21111) (521)
(611)
(2222)
(3221)
(4211)
(22211)
(32111)
(41111)
(221111)
(2111111)
This is the even bisection of
A047967.
A006477 counts partitions w/ at least one odd and even part, ranks
A366532.
-
Table[Length[Select[IntegerPartitions[2n],Or@@EvenQ/@#&]],{n,0,15}]
Showing 1-7 of 7 results.
Comments