A363550 Number of partitions of [n] having exactly one parity change within the partition.
0, 0, 2, 1, 3, 2, 7, 5, 20, 15, 67, 52, 255, 203, 1080, 877, 5017, 4140, 25287, 21147, 137122, 115975, 794545, 678570, 4892167, 4213597, 31858034, 27644437, 218543759, 190899322, 1573857867, 1382958545, 11863100692, 10480142147, 93345011951, 82864869804
Offset: 0
Keywords
Examples
a(2) = 2: 12, 1|2. a(3) = 1: 13|2. a(4) = 3: 134|2, 13|24, 13|2|4. a(5) = 2: 135|24, 135|2|4. a(6) = 7: 1356|24, 135|246, 135|24|6, 1356|2|4, 135|26|4, 135|2|46, 135|2|4|6. a(7) = 5: 1357|246, 1357|24|6, 1357|26|4, 1357|2|46, 1357|2|4|6. a(8) = 20: 13578|246, 1357|2468, 1357|246|8, 13578|24|6, 1357|248|6, 1357|24|68, 1357|24|6|8, 13578|26|4, 1357|268|4, 1357|26|48, 1357|26|4|8, 13578|2|46, 1357|28|46, 1357|2|468, 1357|2|46|8, 13578|2|4|6, 1357|28|4|6, 1357|2|48|6, 1357|2|4|68, 1357|2|4|6|8.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1153
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*binomial(n-1, j-1), j=1..n)) end: a:= n-> `if`(n<2, 0, (h-> b(h)+`if`(n::even, b(h-1), 0))(iquo(n, 2))): seq(a(n), n=0..35);
Comments