A363560 Expansion of g.f. A(x) satisfying A(x)^3 = 1 + x*(A(x) + A(x)^2 + A(x)^9).
1, 1, 3, 18, 126, 966, 7863, 66696, 583111, 5217513, 47547405, 439777242, 4117802109, 38956162023, 371795456373, 3575401032544, 34611064585803, 336998629754631, 3298200003722997, 32428037256038775, 320151289224740949, 3172536384239678856, 31544584654878015766
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 126*x^4 + 966*x^5 + 7863*x^6 + 66696*x^7 + 583111*x^8 + 5217513*x^9 + 47547405*x^10 + ... such that A(x)^3 = 1 + x*(A(x) + A(x)^2 + A(x)^9). Also, A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^4 - A(x)^6 + A(x)^7). RELATED TABLE. The table of coefficients in A(x)^n begins: n=1: [1, 1, 3, 18, 126, 966, 7863, 66696, ...]; n=2: [1, 2, 7, 42, 297, 2292, 18738, 159450, ...]; n=3: [1, 3, 12, 73, 522, 4059, 33354, 284886, ...]; n=4: [1, 4, 18, 112, 811, 6360, 52566, 450888, ...]; n=5: [1, 5, 25, 160, 1175, 9301, 77370, 666780, ...]; n=6: [1, 6, 33, 218, 1626, 13002, 108919, 943524, ...]; n=7: [1, 7, 42, 287, 2177, 17598, 148540, 1293937, ...]; n=8: [1, 8, 52, 368, 2842, 23240, 197752, 1732928, ...]; n=9: [1, 9, 63, 462, 3636, 30096, 258285, 2277756, ...]; ... from which one can verify the formulas involving powers of A(x). RELATED SERIES. Let G(x) = 1 + Series_Reversion( x/(1 + x*(1+x)^2 + x*(1+x)^5) ) where G(x) = 1 + x + 2*x^2 + 11*x^3 + 61*x^4 + 380*x^5 + 2502*x^6 + 17163*x^7 + 121312*x^8 + 877370*x^9 + 6461765*x^10 + ... then A(x) = G(x*A(x)), and so A(x) = (1/x) * Series_Reversion( x/G(x) ); thus, x*A(x) = (A(x) - 1) / (1 + (A(x) - 1)*(A(x)^2 + A(x)^5) ) which is equivalent to A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^4 - A(x)^6 + A(x)^7). TERMS MODULO 3. It appears that a(n) == 0 (mod 3) for n > 0 except when n == 1 (mod 7). The residues of a(7*k + 1) modulo 3, for k >= 0, begin a(7*k + 1) (mod 3) = [1, 1, 1, 1, 0, 2, 1, 0, 0, 1, 1, 2, 0, 0, 2, 2, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 1, 1, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, ...].
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..500
Programs
-
PARI
{a(n) = my(A=1+x); for(i=1, n, A = (1 + x*(A + A^2 + A^9) +x*O(x^n))^(1/3) ); polcoeff(A, n)} for(n=0, 30, print1(a(n), ", "))
Formula
G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following formulas.
(1) A(x) = 1 + x*(A(x) - A(x)^3 + A(x)^4 - A(x)^6 + A(x)^7).
(2) A(x)^2 = 1 + x*(A(x) + A(x)^2 - A(x)^3 + A(x)^5 - A(x)^6 + A(x)^8) .
(3) A(x)^3 = 1 + x*(A(x) + A(x)^2 + A(x)^9).
(4) A(x)^4 = 1 + x*(A(x) + A(x)^2 + A(x)^4 - A(x)^6 + A(x)^7 + A(x)^10).
(5) A(x)^5 = 1 + x*(A(x) + A(x)^2 + A(x)^4 + A(x)^5 - A(x)^6 + A(x)^8 + A(x)^11).
(6) A(x)^6 = 1 + x*(A(x) + A(x)^2 + A(x)^4 + A(x)^5 + A(x)^9 + A(x)^12).
(7) A(x) = (1/x) * Series_Reversion( x/(1 + Series_Reversion( x/(1 + x*(1+x)^2 + x*(1+x)^5) ) ) ).
Comments