cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363561 G.f.: Sum_{n=-oo..+oo} x^n * (sqrt(2) + x^n)^(2*n).

Original entry on oeis.org

1, 3, 4, 15, 16, 52, 77, 184, 256, 716, 1045, 2400, 4320, 9024, 16524, 35439, 65536, 135424, 264928, 534016, 1048856, 2124523, 4196944, 8435712, 16792576, 33658512, 67118016, 134478584, 268435513, 537346048, 1073876144, 2148499456, 4294967296, 8592337520, 17179956224, 34364358760
Offset: 0

Views

Author

Paul D. Hanna, Aug 01 2023

Keywords

Comments

Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds as a formal power series for all y.

Examples

			G.f.: A(x) = 1 + 3*x + 4*x^2 + 15*x^3 + 16*x^4 + 52*x^5 + 77*x^6 + 184*x^7 + 256*x^8 + 716*x^9 + 1045*x^10 + 2400*x^11 + 4320*x^12 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A); A = sum(m=-n-1, n+1, x^m * (sqrt(2) + x^m +x*O(x^n))^(2*m) ); polcoeff(A, n)}
    for(n=0, 30, print1(round(a(n)), ", "))

Formula

The g.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following formulas.
(1.a) A(x) = Sum_{n=-oo..+oo} x^n * (sqrt(2) + x^n)^(2*n).
(1.b) A(x) = Sum_{n=-oo..+oo} x^n * (sqrt(2) - x^n)^(2*n).
(2.a) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 - sqrt(2)*x^n)^(2*n).
(2.b) A(x) = Sum_{n=-oo..+oo} x^(2*n^2-n) / (1 + sqrt(2)*x^n)^(2*n).
(3.a) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^n * (sqrt(2) + x^n)^n.
(3.b) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^n * (-sqrt(2) + x^n)^n.
(4.a) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 + sqrt(2)*x^n)^n.
(4.b) A(x^2) = (1/2) * Sum_{n=-oo..+oo} x^(n^2-n) / (1 - sqrt(2)*x^n)^n.
From Paul D. Hanna, Aug 06 2023: (Start)
The following generating functions are extensions of Peter Bala's formulas given in A260147.
(5.a) A(x^2) = Sum_{n=-oo..+oo} x^(2*n+1) * (sqrt(2) + x^(2*n+1))^(2*n+1).
(5.b) A(x^2) = Sum_{n=-oo..+oo} x^(2*n*(2*n+1)) / (1 + sqrt(2)*x^(2*n+1))^(2*n+1).
(End)
a(2^n) = 2^(2^n) for n > 0 (conjecture).
a(p) = p*2^((p-1)/2) + 2^p for primes p > 3 (conjecture).