A363585 Least prime p such that p^n + 6 is the product of n distinct primes.
5, 2, 23, 127, 71, 353, 1279, 3851, 3049, 18913, 47129, 352073, 696809
Offset: 1
Examples
a(1) = 5; 5^1 + 6 = 11. a(2) = 2; 2^2 + 6 = 2 * 5. a(3) = 23; 23^3 + 6 = 7 * 37 * 47. a(4) = 127; 127^4 + 6 = 7 * 131 * 367 * 773.
Programs
-
Mathematica
Table[b=6;y[a_]:=FactorInteger[Prime[a]^n+b];k=1;Monitor[Parallelize[While[True,If[And[Length[y[k]]==n,Count[Flatten[y[k]],1]==n],Break[]];k++];k],k]//Prime,{n,1,10}]
-
PARI
a(n) = forprime(p=2, , my(f=factor(p^n + 6)); if (issquarefree(f) && (omega(f) == n), return(p)));
Extensions
a(11) from Hugo Pfoertner, Jun 11 2023
a(12) from J.W.L. (Jan) Eerland, Jan 07 2024
a(13) from Hugo Pfoertner, confirmed by Daniel Suteu, Feb 10 2024
Comments