A363601 Number of partitions of n where there are k^2 - 1 kinds of parts k.
1, 0, 3, 8, 21, 48, 126, 288, 693, 1568, 3570, 7896, 17417, 37632, 80823, 171192, 359733, 747936, 1543192, 3155760, 6407037, 12909024, 25835649, 51359136, 101470854, 199264128, 389096028, 755591256, 1459643343, 2805471984, 5366161740, 10216161336, 19362398580
Offset: 0
Crossrefs
Programs
-
Maple
with(numtheory): series(exp(add((sigma[3](k) - sigma[1](k))*x^k/k, k = 1..50)), x, 51): seq(coeftayl(%, x = 0, n), n = 0..50); # Peter Bala, Jan 16 2025
-
PARI
my(N=40, x='x+O('x^N)); Vec(1/prod(k=1, N, (1-x^k)^(k^2-1)))
Formula
G.f.: 1/Product_{k>=1} (1-x^k)^(k^2-1).
a(0) = 1; a(n) = (1/n) * Sum_{k=1..n} A092348(k) * a(n-k).
G.f.: exp(Sum_{k >= 1} (sigma_3(k) - sigma_1(k))*x^k/k) = 1 + 3*x^2 + 8*x^3 + 21*x^4 + 48*x^5 + .... - Peter Bala, Jan 16 2025
Extensions
Name suggested by Joerg Arndt, Jun 11 2023