cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A363607 Expansion of Sum_{k>0} x^(3*k)/(1-x^k)^4.

Original entry on oeis.org

0, 0, 1, 4, 10, 21, 35, 60, 85, 130, 165, 245, 286, 399, 466, 620, 680, 921, 969, 1274, 1366, 1705, 1771, 2325, 2310, 2886, 3010, 3679, 3654, 4666, 4495, 5580, 5622, 6664, 6590, 8285, 7770, 9405, 9426, 11210, 10660, 13230, 12341, 14953, 14740, 16951, 16215, 20181
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[#, 3] &]; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); concat([0, 0], Vec(sum(k=1, N, x^(3*k)/(1-x^k)^4)))
    
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 3) - 3*sigma(f, 2) + 2*sigma(f)) / 6; \\ Amiram Eldar, Dec 30 2024

Formula

G.f.: Sum_{k>0} binomial(k,3) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d,3).
From Amiram Eldar, Dec 30 2024: (Start)
a(n) = (sigma_3(n) - 3*sigma_2(n) + 2*sigma_1(n)) / 6.
Dirichlet g.f.: zeta(s) * (zeta(s-3) - 3*zeta(s-2) + 2*zeta(s-1)) / 6.
Sum_{k=1..n} a(k) ~ (zeta(4)/24) * n^4. (End)

A363618 Expansion of Sum_{k>0} x^(4*k)/(1+x^k)^5.

Original entry on oeis.org

0, 0, 0, 1, -5, 15, -35, 71, -126, 205, -330, 511, -715, 966, -1370, 1891, -2380, 2949, -3876, 5051, -6020, 6985, -8855, 11207, -12655, 14235, -17676, 21442, -23751, 26260, -31465, 37851, -41250, 43996, -52400, 62350, -66045, 69939, -82966, 96511, -101270
Offset: 1

Views

Author

Seiichi Manyama, Jun 11 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^# * Binomial[#, 4] &]; Array[a, 50] (* Amiram Eldar, Jul 25 2023 *)
  • PARI
    my(N=50, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/(1+x^k)^5)))
    
  • PARI
    a(n) = sumdiv(n, d, (-1)^d*binomial(d, 4));

Formula

G.f.: Sum_{k>0} binomial(k,4) * (-x)^k/(1 - x^k).
a(n) = Sum_{d|n} (-1)^d * binomial(d,4).

A363695 Expansion of Sum_{k>0} (1/(1-x^k)^5 - 1).

Original entry on oeis.org

5, 20, 40, 90, 131, 265, 335, 585, 755, 1147, 1370, 2155, 2385, 3410, 4042, 5430, 5990, 8295, 8860, 11843, 13020, 16335, 17555, 23125, 23882, 29805, 32220, 39440, 40925, 51644, 52365, 64335, 67450, 79820, 82712, 101575, 101275, 120805, 125830, 148089, 149000, 179490
Offset: 1

Views

Author

Seiichi Manyama, Jun 16 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, Binomial[# + 4, 4] &]; Array[a, 40] (* Amiram Eldar, Jul 05 2023 *)
  • PARI
    a(n) = sumdiv(n, d, binomial(d+4, 4));

Formula

G.f.: Sum_{k>0} binomial(k+4,4) * x^k/(1 - x^k).
a(n) = Sum_{d|n} binomial(d+4,4).
Showing 1-3 of 3 results.