A363722 Nonprime numbers whose prime indices satisfy (mean) = (median) = (mode), assuming there is a unique mode.
4, 8, 9, 16, 25, 27, 32, 49, 64, 81, 90, 121, 125, 128, 169, 243, 256, 270, 289, 343, 361, 512, 525, 529, 550, 625, 729, 756, 810, 841, 961, 1024, 1331, 1369, 1666, 1681, 1849, 1911, 1950, 2048, 2187, 2197, 2209, 2268, 2401, 2430, 2625, 2695, 2700, 2750, 2809
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 4: {1,1} 8: {1,1,1} 9: {2,2} 16: {1,1,1,1} 25: {3,3} 27: {2,2,2} 32: {1,1,1,1,1} 49: {4,4} 64: {1,1,1,1,1,1} 81: {2,2,2,2} 90: {1,2,2,3} 121: {5,5} 125: {3,3,3} 128: {1,1,1,1,1,1,1}
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; Select[Range[100],!PrimeQ[#]&&{Mean[prix[#]]}=={Median[prix[#]]}==modes[prix[#]]&]
Comments