A363727
Numbers whose prime indices satisfy (mean) = (median) = (mode), assuming there is a unique mode.
Original entry on oeis.org
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 90, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199
Offset: 1
The terms together with their prime indices begin:
2: {1} 29: {10} 79: {22}
3: {2} 31: {11} 81: {2,2,2,2}
4: {1,1} 32: {1,1,1,1,1} 83: {23}
5: {3} 37: {12} 89: {24}
7: {4} 41: {13} 90: {1,2,2,3}
8: {1,1,1} 43: {14} 97: {25}
9: {2,2} 47: {15} 101: {26}
11: {5} 49: {4,4} 103: {27}
13: {6} 53: {16} 107: {28}
16: {1,1,1,1} 59: {17} 109: {29}
17: {7} 61: {18} 113: {30}
19: {8} 64: {1,1,1,1,1,1} 121: {5,5}
23: {9} 67: {19} 125: {3,3,3}
25: {3,3} 71: {20} 127: {31}
27: {2,2,2} 73: {21} 128: {1,1,1,1,1,1,1}
A360005 gives twice the median of prime indices.
Just two statistics:
- (median) = (mode): counted by
A363740.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
Select[Range[100],{Mean[prix[#]]}=={Median[prix[#]]}==modes[prix[#]]&]
A363719
Number of integer partitions of n satisfying (mean) = (median) = (mode), assuming there is a unique mode.
Original entry on oeis.org
1, 2, 2, 3, 2, 4, 2, 5, 3, 5, 2, 10, 2, 7, 7, 12, 2, 18, 2, 24, 16, 13, 2, 58, 15, 18, 37, 60, 2, 123, 2, 98, 79, 35, 103, 332, 2, 49, 166, 451, 2, 515, 2, 473, 738, 92, 2, 1561, 277, 839, 631, 1234, 2, 2043, 1560, 2867, 1156, 225, 2, 9020
Offset: 1
The a(n) partitions for n = 1, 2, 4, 6, 8, 12, 14, 16 (A..G = 10..16):
1 2 4 6 8 C E G
11 22 33 44 66 77 88
1111 222 2222 444 2222222 4444
111111 3221 3333 3222221 5443
11111111 4332 3322211 6442
5331 4222211 7441
222222 11111111111111 22222222
322221 32222221
422211 33222211
111111111111 42222211
52222111
1^16
Just two statistics:
A008284 counts partitions by length (or negative mean), strict
A008289.
A362608 counts partitions with a unique mode.
-
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
Table[Length[Select[IntegerPartitions[n], {Mean[#]}=={Median[#]}==modes[#]&]],{n,30}]
A363730
Numbers whose prime indices have different mean, median, and mode.
Original entry on oeis.org
42, 60, 66, 70, 78, 84, 102, 114, 130, 132, 138, 140, 150, 154, 156, 165, 170, 174, 180, 182, 186, 190, 195, 204, 220, 222, 228, 230, 231, 246, 255, 258, 260, 266, 276, 282, 285, 286, 290, 294, 308, 310, 315, 318, 322, 330, 340, 345, 348, 354, 357, 360, 364
Offset: 1
The prime indices of 180 are {1,1,2,2,3}, with mean 9/5, median 2, modes {1,2}, so 180 is in the sequence.
The prime indices of 108 are {1,1,2,2,2}, with mean 8/5, median 2, modes {2}, so 108 is not in the sequence.
The terms together with their prime indices begin:
42: {1,2,4}
60: {1,1,2,3}
66: {1,2,5}
70: {1,3,4}
78: {1,2,6}
84: {1,1,2,4}
102: {1,2,7}
114: {1,2,8}
130: {1,3,6}
132: {1,1,2,5}
138: {1,2,9}
140: {1,1,3,4}
150: {1,2,3,3}
These partitions are counted by
A363720
A360005 gives twice the median of prime indices.
Just two statistics:
- (median) = (mode): counted by
A363740.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
Select[Range[100],{Mean[prix[#]]}!={Median[prix[#]]}!=modes[prix[#]]&]
A364061
Numbers whose exponent of 2 in their canonical prime factorization is smaller than all the other exponents.
Original entry on oeis.org
2, 4, 8, 16, 18, 32, 50, 54, 64, 98, 108, 128, 162, 242, 250, 256, 324, 338, 450, 486, 500, 512, 578, 648, 686, 722, 882, 972, 1024, 1058, 1250, 1350, 1372, 1458, 1682, 1922, 1944, 2048, 2178, 2250, 2450, 2500, 2646, 2662, 2738, 2916, 3042, 3362, 3698, 3888
Offset: 1
The terms together with their prime factors begin:
2 = 2
4 = 2*2
8 = 2*2*2
16 = 2*2*2*2
18 = 2*3*3
32 = 2*2*2*2*2
50 = 2*5*5
54 = 2*3*3*3
64 = 2*2*2*2*2*2
98 = 2*7*7
108 = 2*2*3*3*3
128 = 2*2*2*2*2*2*2
Partitions of this type are counted by
A364062.
Cf.
A000265,
A007814,
A327473,
A327476,
A362616,
A360014,
A363722,
A363723,
A363725,
A363727,
A363730.
-
filter:= proc(n) local F,F2,Fo;
F:= ifactors(n)[2];
F2,Fo:= selectremove(t -> t[1]=2, F);
Fo = [] or F2[1,2] < min(Fo[..,2])
end proc:
select(filter, 2*[$1..5000]); # Robert Israel, Apr 22 2024
-
prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
Select[Range[100],comodes[prifacs[#]]=={2}&]
-
from sympy import factorint
from itertools import count, islice
def A364061_gen(startvalue=2): # generator of terms >= startvalue
return filter(lambda n:(l:=(~n&n-1).bit_length()) < min(factorint(m:=n>>l).values(),default=0) or m==1, count(max(startvalue+startvalue&1,2),2))
A364061_list = list(islice(A364061_gen(),30)) # Chai Wah Wu, Jul 14 2023
A363729
Numbers that are not a power of a prime but whose prime indices satisfy (mean) = (median) = (mode), assuming there is a unique mode.
Original entry on oeis.org
90, 270, 525, 550, 756, 810, 1666, 1911, 1950, 2268, 2430, 2625, 2695, 2700, 2750, 5566, 6762, 6804, 6897, 7128, 7290, 8100, 8500, 9310, 9750, 10285, 10478, 11011, 11550, 11662, 12250, 12375, 12495, 13125, 13377, 13750, 14014, 14703, 18865, 19435, 20412, 21384
Offset: 1
The prime indices of 6897 are {2,5,5,8}, with mean 5, median 5, and modes {5}, so 6897 is in the sequence.
The terms together with their prime indices begin:
90: {1,2,2,3}
270: {1,2,2,2,3}
525: {2,3,3,4}
550: {1,3,3,5}
756: {1,1,2,2,2,4}
810: {1,2,2,2,2,3}
1666: {1,4,4,7}
1911: {2,4,4,6}
1950: {1,2,3,3,6}
2268: {1,1,2,2,2,2,4}
2430: {1,2,2,2,2,2,3}
For just primes instead of prime powers we have
A363722.
These partitions are counted by
A363728.
A360005 gives twice the median of prime indices.
Just two statistics:
- (median) = (mode): counted by
A363740.
Cf.
A215366,
A327473,
A327476,
A359893,
A359908,
A360009,
A360248,
A360550,
A363721,
A363725,
A363741.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
Select[Range[1000],!PrimePowerQ[#]&&{Mean[prix[#]]}=={Median[prix[#]]}==modes[prix[#]]&]
Showing 1-5 of 5 results.
Comments