A363723 Number of integer partitions of n having a unique mode equal to the mean, i.e., partitions whose mean appears more times than each of the other parts.
0, 1, 2, 2, 3, 2, 4, 2, 5, 3, 5, 2, 10, 2, 7, 7, 12, 2, 18, 2, 24, 16, 13, 2, 60, 15, 18, 37, 60, 2, 129, 2, 104, 80, 35, 104, 352, 2, 49, 168, 501, 2, 556, 2, 489, 763, 92, 2, 1799, 292, 985, 649, 1296, 2, 2233, 1681, 3379, 1204, 225, 2, 10661
Offset: 0
Keywords
Examples
The a(n) partitions for n = 6, 8, 12, 14, 16 (A..G = 10..16): (6) (8) (C) (E) (G) (33) (44) (66) (77) (88) (222) (2222) (444) (2222222) (4444) (111111) (3221) (3333) (3222221) (5443) (11111111) (4332) (3322211) (6442) (5331) (4222211) (7441) (222222) (11111111111111) (22222222) (322221) (32222221) (422211) (33222211) (111111111111) (42222211) (52222111) (1111111111111111)
Crossrefs
Programs
-
Mathematica
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; Table[Length[Select[IntegerPartitions[n],{Mean[#]}==modes[#]&]],{n,30}]
Comments