A363724 Number of integer partitions of n whose mean is a mode, i.e., partitions whose mean appears at least as many times as each of the other parts.
1, 2, 2, 3, 2, 5, 2, 5, 5, 6, 2, 15, 2, 8, 15, 17, 2, 30, 2, 43, 30, 15, 2, 112, 36, 21, 60, 119, 2, 251, 2, 201, 126, 41, 271, 655, 2, 57, 250, 1060, 2, 1099, 2, 844, 1508, 107, 2, 3484, 802, 2068, 900, 2136, 2, 4558, 3513, 7071, 1630, 259, 2, 20260
Offset: 1
Keywords
Examples
The a(n) partitions for n = 6, 10, 12: (6) (10) (12) (3,3) (5,5) (6,6) (2,2,2) (2,2,2,2,2) (4,4,4) (3,2,1) (3,2,2,2,1) (5,4,3) (1,1,1,1,1,1) (4,2,2,1,1) (6,4,2) (1,1,1,1,1,1,1,1,1,1) (7,4,1) (3,3,3,3) (4,3,3,2) (5,3,3,1) (6,3,2,1) (2,2,2,2,2,2) (3,2,2,2,2,1) (3,3,2,2,1,1) (4,2,2,2,1,1) (1,1,1,1,1,1,1,1,1,1,1,1)
Programs
-
Mathematica
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; Table[Length[Select[IntegerPartitions[n],MemberQ[modes[#],Mean[#]]&]],{n,30}]
Comments