A363728 Number of integer partitions of n that are not constant but satisfy (mean) = (median) = (mode), assuming there is a unique mode.
0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 4, 0, 3, 3, 7, 0, 12, 0, 18, 12, 9, 0, 50, 12, 14, 33, 54, 0, 115, 0, 92, 75, 31, 99, 323, 0, 45, 162, 443, 0, 507, 0, 467, 732, 88, 0, 1551, 274, 833, 627, 1228, 0, 2035, 1556, 2859, 1152, 221, 0, 9008, 0, 295, 4835, 5358
Offset: 1
Keywords
Examples
The a(8) = 1 through a(18) = 12 partitions: 3221 . 32221 . 4332 . 3222221 43332 5443 . 433332 5331 3322211 53331 6442 443331 322221 4222211 63321 7441 533322 422211 32222221 533331 33222211 543321 42222211 633321 52222111 733311 322222221 332222211 422222211 432222111 522222111
Programs
-
Mathematica
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; Table[Length[Select[IntegerPartitions[n],!SameQ@@#&&{Mean[#]}=={Median[#]}==modes[#]&]],{n,30}]
Comments