A363727 Numbers whose prime indices satisfy (mean) = (median) = (mode), assuming there is a unique mode.
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 90, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 2: {1} 29: {10} 79: {22} 3: {2} 31: {11} 81: {2,2,2,2} 4: {1,1} 32: {1,1,1,1,1} 83: {23} 5: {3} 37: {12} 89: {24} 7: {4} 41: {13} 90: {1,2,2,3} 8: {1,1,1} 43: {14} 97: {25} 9: {2,2} 47: {15} 101: {26} 11: {5} 49: {4,4} 103: {27} 13: {6} 53: {16} 107: {28} 16: {1,1,1,1} 59: {17} 109: {29} 17: {7} 61: {18} 113: {30} 19: {8} 64: {1,1,1,1,1,1} 121: {5,5} 23: {9} 67: {19} 125: {3,3,3} 25: {3,3} 71: {20} 127: {31} 27: {2,2,2} 73: {21} 128: {1,1,1,1,1,1,1}
Crossrefs
Programs
-
Mathematica
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&]; Select[Range[100],{Mean[prix[#]]}=={Median[prix[#]]}==modes[prix[#]]&]
Comments