A363782 Products of three distinct strong primes.
5423, 6919, 7667, 11033, 11803, 12529, 13079, 13277, 14773, 16687, 18139, 18241, 18821, 18887, 20009, 20213, 21373, 22649, 23749, 24013, 25201, 25619, 25789, 26609, 27269, 27863, 28897, 29087, 30217, 30481, 30943, 32021, 32153, 32219, 33031, 33473, 34133, 35003, 35629, 35717, 36839
Offset: 1
Keywords
Examples
5423 = 11*17*29 and 11 > (7+13)/2, 17 > (13+19)/2, 29 > (23+31)/2. 6919 = 11*17*37 and 11 > (7+13)/2, 17 > (13+19)/2, 37 > (31+41)/2.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
strongQ[p_] := p > 2 && 2*p > Total[NextPrime[p, {-1, 1}]]; Select[Range[1, 37000, 2], (f = FactorInteger[#])[[;; , 2]] == {1, 1, 1} && AllTrue[f[[;; , 1]], strongQ] &] (* Amiram Eldar, Jun 21 2023 *) Module[{nn=50,strgpr},strgpr=Select[Partition[Prime[Range[nn]],3,1],#[[2]]>(#[[1]]+#[[3]])/2&][[;;,2]];Take[Union[Times@@@Subsets[strgpr,{3}]],nn]] (* Harvey P. Dale, Aug 21 2024 *)
Extensions
Definition clarified by N. J. A. Sloane, Oct 08 2023
Comments