cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A363843 a(n) is the number of isomorphism classes of genus 3 hyperelliptic curves over the finite field of order prime(n).

Original entry on oeis.org

76, 526, 6508, 34228, 324562, 747004, 2849576, 4965266, 12896050, 41071144, 57316082, 138789292, 231850328, 294172382, 458893426, 836688844, 1430252626, 1689646684, 2700843026, 3609164734, 4146921368, 6155086706, 7879211410, 11169529016, 17176506056, 21022261804, 23187646130
Offset: 1

Views

Author

Robin Visser, Jun 23 2023

Keywords

Examples

			For n = 1, E. Nart and D. Sadornil showed that there are 76 genus 3 hyperelliptic curves over F_2, so a(1) = 76.
		

Crossrefs

Programs

  • Sage
    def a(n):
        if n == 1: return 76
        p = Primes()[n-1]
        ans = 2*p^5 + 2*p^3 - 2
        if p%4 == 3: ans -= 2*(p^2 - p)
        if p > 3: ans += 2*(p - 1)
        if p%8 == 1: ans += 4
        if p%7 == 1: ans += 12
        if p == 7: ans += 2
        if p%12 in [1, 5]: ans += 2
        return ans

Formula

a(1) = 76, and for n > 1, a(n) = 2*prime(n)^5 + 2*prime(n)^3 - 2 - 2*(prime(n)^2 - prime(n))*[prime(n) == 3 (mod 4)] + 2*(prime(n)-1)*[prime(n) > 3] + 4*[prime(n) == 1 (mod 8)] + 12*[prime(n) == 1 (mod 7)] + 2*[prime(n) == 7] + 2*[prime(n) == 1 or 5 (mod 12)].
Showing 1-1 of 1 results.