cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A363840 a(n) is the number of isomorphism classes of genus 2 hyperelliptic curves over the finite field of order prime(n).

Original entry on oeis.org

20, 69, 285, 749, 2813, 4589, 10149, 14119, 24907, 49675, 60613, 102749, 139613, 160951, 209947, 300667, 414357, 457813, 606151, 721011, 783511, 992477, 1150629, 1418037, 1834951, 2071011, 2196269, 2461749, 2602157, 2898789, 4113149, 4513613, 5161749, 5390839, 6638395, 6909013, 7764749
Offset: 1

Views

Author

Robin Visser, Jun 23 2023

Keywords

Comments

Any (smooth, projective, geometrically irreducible) curve of genus 2 can be given by a Weierstrass equation of the form: y^2 + h(x)y = f(x), where h(x) and f(x) are polynomials satisfying deg(h) <= 3 and deg(f) <= 6.

Examples

			For n = 1, the a(1) = 20 genus 2 curves over F_2 can be given by their Weierstrass models as: y^2 + y = x^5, y^2 + (x^2 + 1)y = x^5, y^2 + (x^3 + x^2 + 1)y = x^5, y^2 + (x^3 + x + 1)y = x^5, y^2 + (x^3 + x^2 + x + 1)y = x^5, y^2 + y = x^5 + x^4, y^2 + (x+1)y = x^5 + x^4, y^2 + (x^2 + x + 1)y = x^5 + x^4, y^2 + (x^3 + x^2 + 1)y = x^5 + x^4, y^2 + y = x^5 + x^4 + x^3, y^2 + (x^2 + x + 1)y = x^5 + x^4 + x^3, y^2 + xy = x^5 + x^4 + x, y^2 + (x^2)y = x^5 + x^4 + x, y^2 + (x^2 + x)y = x^5 + x^4 + x, y^2 + y = x^5 + x^4 + 1, y^2 + (x^2 + x + 1)y = x^5 + x^4 + 1, y^2 + (x^3 + x^2 + 1)y = x^5 + x^4 + 1, y^2 + y = x^5 + x^3 + 1, y^2 + (x^3 + x^2 + 1)y = x^5 + x^3 + 1, and y^2 + (x^3 + x^2 + 1)y = x^6 + x^5 + 1.
		

Crossrefs

Programs

  • Sage
    def a(n):
        if n == 1: return 20
        p = Primes()[n-1]
        ans = 2*p^3 + p^2 + 2*p - 2
        if p%3 == 1: ans += 2
        if p%5 == 1: ans += 8
        if p == 5: ans += 2
        if p%8 in [1,3]: ans += 2
        return ans

Formula

a(1) = 20, and for n > 1, a(n) = 2*prime(n)^3 + prime(n)^2 + 2*prime(n) - 2 + 2*[prime(n) == 1 (mod 3)] + 8*[prime(n) == 1 (mod 5)] + 2*[prime(n) == 5] + 2*[prime(n) == 1 or 3 (mod 8)].
Showing 1-1 of 1 results.