A363849 Triangular array read by rows. T(n,k) is the number of Green's H-classes of rank k in the semigroup of partial transformations, n >= 0, 0 <= k <= n.
1, 1, 1, 1, 6, 1, 1, 21, 18, 1, 1, 60, 150, 40, 1, 1, 155, 900, 650, 75, 1, 1, 378, 4515, 7000, 2100, 126, 1, 1, 889, 20286, 59535, 36750, 5586, 196, 1, 1, 2040, 84700, 435120, 486570, 148176, 12936, 288, 1, 1, 4599, 335880, 2864820, 5358150, 2876202, 493920, 27000, 405, 1
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 6, 1; 1, 21, 18, 1; 1, 60, 150, 40, 1; 1, 155, 900, 650, 75, 1; ...
References
- O. Ganyushkin and V. Mazorchuk, Classical Finite Transformation Semigroups, 2009, Chapter 4.4 - 4.6.
Links
- Wikipedia, Green's relations
- Wikipedia, Transversal (combinatorics)
Crossrefs
Programs
-
Maple
T:= (n, k)-> binomial(n, k)*Stirling2(n+1, k+1): seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Jun 24 2023
-
Mathematica
Table[Table[Binomial[n, k] StirlingS2[n + 1, k + 1], {k, 0, n}], {n,0, 5}] // Grid
Comments