A363859 Number of divisors of 7*n-1 of the form 7*k+2.
1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 3, 0, 1, 1, 1, 0, 2, 0, 1, 2, 2, 0, 2, 0, 1, 1, 1, 0, 3, 0, 2, 1, 1, 0, 2, 0, 2, 2, 1, 0, 3, 0, 1, 1, 1, 0, 3, 0, 1, 1, 2, 0, 3, 1, 1, 2, 1, 0, 2, 0, 2, 1, 1, 0, 3, 0, 1, 1, 2, 0, 4, 0, 1, 2, 1, 0, 3, 0, 1, 1, 2, 0, 3, 0, 2, 1, 1, 1, 2, 0, 2, 2, 1, 0, 2, 0, 1, 1
Offset: 1
Programs
-
Mathematica
a[n_] := DivisorSum[7*n - 1, 1 &, Mod[#, 7] == 2 &]; Array[a, 100] (* Amiram Eldar, Jun 25 2023 *)
-
PARI
a(n) = sumdiv(7*n-1, d, d%7==2);
Formula
G.f.: Sum_{k>0} x^(3*k-2)/(1 - x^(7*k-5)).
G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(7*k-4)).
a(n) = Sum_{d|(7n-1)} c((d-2)/7), where c(n) = 1-ceiling(n)+floor(n). - Wesley Ivan Hurt, Sep 05 2025
Comments