A363868 a(n) = A108625(3*n, n).
1, 13, 505, 24691, 1337961, 76869013, 4586370139, 280973874215, 17552736006121, 1113134497824901, 71437216036404505, 4629194489296980715, 302391678415222922475, 19886936616891022422159, 1315438146193644502479255, 87445220568000089973356191, 5838332204000163260729138153
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
Programs
-
Magma
A363868:= func< n | (&+[Binomial(3*n,n-j)^2*Binomial(3*n+j,j): j in [0..n]]) >; [A363868(n): n in [0..30]]; // G. C. Greubel, Oct 05 2023
-
Maple
A108625 := (n, k) -> hypergeom([-n, -k, n+1], [1, 1], 1): seq(simplify(A108625(3*n, n)), n = 0..16);
-
Mathematica
Table[HypergeometricPFQ[{-3*n,-n,3*n+1}, {1,1}, 1], {n,0,30}] (* G. C. Greubel, Oct 05 2023 *)
-
SageMath
def A363868(n): return sum(binomial(3*n,n-j)^2*binomial(3*n+j, j) for j in range(n+1)) [A363868(n) for n in range(31)] # G. C. Greubel, Oct 05 2023
Formula
a(n) = Sum_{k = 0..n} binomial(3*n, n-k)^2 * binomial(3*n+k, k).
a(n) = Sum_{k = 0..n} (-1)^(n+k) * binomial(3*n, n-k) * binomial(3*n+k, k)^2.
a(n) = hypergeometric3F2( [-3*n, -n, 3*n+1], [1, 1], 1).
a(n) = [x^n] 1/(1 - x)*Legendre_P(3*n, (1 + x)/(1 - x)).
P-recursive: 3*(4797*n^4 - 26076*n^3 + 53055*n^2 - 47886*n + 16178)*(3*n - 1)^2*(3*n - 2)^2*n^2*a(n) = (82935333*n^10 - 699633963*n^9 + 2570641767*n^8 - 5402404662*n^7 + 7171181427*n^6 - 6264762171*n^5 + 3637752517*n^4 - 1382756780*n^3 + 328531700*n^2 - 44004160*n + 2529600)*a(n-1) + 3*(4797*n^4 - 6888*n^3 + 3609*n^2 - 816*n + 68)*(n - 1)^2*(3*n - 4)^2*(3*n - 5)^2*a(n-2) with a(0) = 1 and a(1) = 13.
a(n) ~ sqrt(17 + 61/sqrt(13)) * ((1921 + 533*sqrt(13))/54)^n / (6*Pi*sqrt(2)*n). - Vaclav Kotesovec, Feb 17 2024
a(n) = Sum_{k = 0..n} binomial(n, k) * binomial(3*n, k) * binomial(3*n+k, k). - Peter Bala, Feb 26 2024
Comments