A363869 a(n) = A108625(3*n, 2*n).
1, 55, 12559, 3685123, 1205189519, 418856591055, 151353475289275, 56193989426243199, 21283943385478109071, 8185785098679048061837, 3186604888590691870779559, 1252744279186835597251089055, 496508748101370063304243706939, 198134918989716743103591120933103
Offset: 0
Links
- Paolo Xausa, Table of n, a(n) for n = 0..350
- Peter Bala, A recurrence for A363869
Programs
-
Maple
A108625 := (n, k) -> hypergeom([-n, -k, n+1], [1, 1], 1): seq(simplify(A108625(3*n, 2*n)), n = 0..20);
-
Mathematica
A363869[n_] := HypergeometricPFQ[{-2*n, -3*n, 3*n + 1}, {1, 1}, 1]; Array[A363869, 20, 0] (* Paolo Xausa, Feb 26 2024 *)
Formula
a(n) = Sum_{k = 0..2*n} binomial(3*n, k)^2 * binomial(5*n-k, 3*n).
a(n) = Sum_{k = 0..2*n} (-1)^k * binomial(3*n, k)*binomial(5*n-k, 3*n)^2.
a(n) = hypergeom( [-2*n, -3*n, 3*n+1], [1, 1], 1).
a(n) = [x^(2*n)] 1/(1 - x)*Legendre_P(3*n, (1 + x)/(1 - x)).
a(n) ~ 2^(4*n) * 3^(3*n) / (sqrt(5)*Pi*n). - Vaclav Kotesovec, Apr 27 2024
Comments