cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A363919 a(n) = n^excess(n), where excess(n) = A046660(n).

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 64, 9, 1, 1, 12, 1, 1, 1, 4096, 1, 18, 1, 20, 1, 1, 1, 576, 25, 1, 729, 28, 1, 1, 1, 1048576, 1, 1, 1, 1296, 1, 1, 1, 1600, 1, 1, 1, 44, 45, 1, 1, 110592, 49, 50, 1, 52, 1, 2916, 1, 3136, 1, 1, 1, 60, 1, 1, 63, 1073741824, 1, 1, 1, 68
Offset: 1

Views

Author

Keywords

Examples

			108 = 2^2 * 3^3 => excess(108) = 5 - 2 => a(108) = 108^3 = 1259712.
		

Crossrefs

Programs

  • Julia
    using Nemo
    exc(n::fmpz) = sum(e - 1 for (p, e) in factor(n))
    A363919(n::fmpz) = n < 2 ? fmpz(1) : n^exc(n)
    println([A363919(fmpz(n)) for n in 1:68])
    
  • Maple
    with(NumberTheory):
    A363919 := n -> n^(NumberOfPrimeFactors(n) - NumberOfPrimeFactors(n, 'distinct')):
    # Alternative:
    a := n -> local i: n^add(i[2] - 1, i in ifactors(n)[2]): seq(a(n), n = 1..68);
  • Mathematica
    Array[#^(PrimeOmega[#] - PrimeNu[#]) &, 120]
  • PARI
    a(n) = my(f=factor(n)[, 2]); n^(vecsum(f)-#f); \\ Michel Marcus, Jul 16 2023
    
  • Python
    from sympy import factorint
    def A363919(n): return n**sum(map(lambda e:e-1,factorint(n).values())) # Chai Wah Wu, Jul 18 2023
  • SageMath
    def A363919(n):
        if n < 2: return 1
        return n^sum(p[1] - 1 for p in list(factor(n)))
    print([A363919(n) for n in srange(1, 69)])
    

Formula

a(n) = n^(Sum_{p in Factors(n)} (mult(p) - 1)), where Factors(n) is the integer factorization of n and mult(p) the multiplicity of the prime factor p.
a(n) = A363923(n) / A205959(n).
a(n) = n^A046660(n) = n^(A001222(n) - A001221(n)).
a(n) = 1 or divisible by at least one squared prime.
a(n) = 1 <=> n is squarefree (A005117).
a(n) != 1 <=> A056170(n) != 0.
a(n) = n <=> n = A060687(n - 1) for n >= 2.
a(2^n) = 2^(n*(n - 1)) = A053763(n).
a(n) <= 2^(lb(n)*(lb(n)-1)), where lb(n) = floor(log_{2}(n)).
a(n) is even <=> n = 2*A337945(n).
a(n) > 1 is odd <=> n = A053850(n).
n is prime => a(n) = 1. ('prime' means term of A000040).
n is prime product => a(n) = 1. ('prime product' means term of A144338).
n is proper prime power => a(n) is proper prime power. ('proper prime power' means term of A246547).
Moebius(a(n)) = [a(n) = 1], where [ ] denotes the Iverson bracket.