A124943 Table read by rows: number of partitions of n with k as low median.
1, 1, 1, 2, 0, 1, 3, 1, 0, 1, 4, 2, 0, 0, 1, 6, 3, 1, 0, 0, 1, 8, 4, 2, 0, 0, 0, 1, 11, 6, 3, 1, 0, 0, 0, 1, 15, 8, 4, 2, 0, 0, 0, 0, 1, 20, 12, 5, 3, 1, 0, 0, 0, 0, 1, 26, 16, 7, 4, 2, 0, 0, 0, 0, 0, 1, 35, 22, 10, 5, 3, 1, 0, 0, 0, 0, 0, 1, 45, 29, 14, 6, 4, 2, 0, 0, 0, 0, 0, 0, 1, 58, 40, 19, 8, 5, 3, 1
Offset: 1
Examples
For the partition [2,1^2], the sole middle element is 1, so that is the low median. For [3,2,1^2], the two middle elements are 1 and 2; the low median is the smaller, 1. First 8 rows: 1 1 1 2 0 1 3 1 0 1 4 2 0 0 1 6 3 1 0 0 1 8 4 2 0 0 0 1 11 6 3 1 0 0 0 1 From _Gus Wiseman_, Jul 09 2023: (Start) Row n = 8 counts the following partitions: (71) (62) (53) (44) . . . (8) (611) (521) (431) (5111) (422) (332) (4211) (3221) (41111) (2222) (3311) (22211) (32111) (311111) (221111) (2111111) (11111111) (End)
Crossrefs
Programs
-
Mathematica
Map[BinCounts[#, {1, #[[1]] + 1, 1}] &[Map[#[[Floor[(Length[#] + 2)/2]]] &, IntegerPartitions[#]]] &, Range[13]] (* Peter J. C. Moses, May 14 2019 *)
Comments