cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A364011 Expansion of Sum_{k>0} x^k / (1 + x^(3*k)).

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 2, 0, 1, 0, 1, 0, 2, 2, 1, -1, 1, 1, 2, -1, 2, 0, 1, 0, 2, 2, 1, 0, 1, 0, 2, -1, 1, 0, 2, 0, 2, 2, 2, -2, 1, 2, 2, -1, 1, 0, 1, -1, 3, 1, 1, 0, 1, 1, 2, 0, 2, 0, 1, -1, 2, 2, 2, -2, 2, 0, 2, -1, 1, 0, 1, 0, 2, 2, 2, 0, 2, 2, 2, -3, 1, 0, 1, 0, 2, 2, 1, -2, 1, 0, 4, -1, 2, 0
Offset: 1

Views

Author

Seiichi Manyama, Jul 01 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := -DivisorSum[n, (-1)^(n/#) &, Mod[n/#, 3] == 1 &]; Array[a, 100] (* Amiram Eldar, Jul 01 2023 *)
  • PARI
    a(n) = -sumdiv(n, d, (d%3==1)*(-1)^d);

Formula

G.f.: Sum_{k>0} (-1)^(k-1) * x^(3*k-2) / (1 - x^(3*k-2)).
a(n) = -Sum_{d|n, n/d==1 (mod 3)} (-1)^(n/d) = -Sum_{d|n, d==1 (mod 3)} (-1)^d.