A364089 a(n) is the greatest k such that the base-n digits of 2^k are all distinct.
1, 1, 3, 4, 5, 8, 5, 10, 29, 19, 19, 19, 16, 18, 7, 43, 41, 37, 45, 39, 55, 33, 43, 60, 35, 61, 56, 50, 44, 69, 9, 64, 44, 80, 43, 88, 53, 71, 56, 68, 59, 78, 76, 74, 95, 109, 111, 81, 86, 136, 117, 75, 98, 83, 84, 99, 104, 116, 95, 118, 60, 81, 11, 119, 119, 172, 140, 97, 105, 113, 93, 122, 92
Offset: 2
Examples
a(10) = 29 because all decimal digits of 2^29 = 536870912 are distinct.
Programs
-
Maple
f:= proc(b) local M,k,L; M:= b^b - (b^b-b)/(b-1)^2; for k from ilog2(M) to 1 by -1 do L:= convert(2^k,base,b); if nops(L) = nops(convert(L,set)) then return k fi od end proc: map(f, [$2..100]);
-
Python
from sympy.ntheory.factor_ import digits def A364089(n): m = 1<<(l:=((r:=n**n)-(r-n)//(n-1)**2).bit_length()-1) while len(d:=digits(m,n)[1:]) > len(set(d)): l -= 1 m >>= 1 return l # Chai Wah Wu, Jul 07 2023
Comments