A364115 a(n) = [x^n] 1/(1 - x) * Legendre_P(n, (1 + x)/(1 - x))^4 for n >= 0.
1, 9, 289, 14409, 908001, 65898009, 5246665201, 445752724041, 39731504675041, 3674479246416009, 349918540195094289, 34125049533650776281, 3394306634561379583281, 343284252364774351717641, 35215197976859176290014289, 3657148830889736882170190409
Offset: 0
Examples
Examples of supercongruences: a(11) - a(1) = 34125049533650776281 - 9 = (2^4)*(3^2)*(11^3)*13*97*11423* 12360541 == 0 (mod 11^3). a(11 - 1) - a(0) = 349918540195094289 - 1 = (2^4)*(11^3)*103*159526079101 == 0 (mod 11^3). a(5^2) - a(5) = 823068999686576893970482230168234294266351898009 - 65898009 = (2^7)*(3^2)*(5^6)*11*17*31*311*35978539*2371705409*297232149579326831 == 0 (mod 5^6). a(5^2 - 1) - a(5 - 1) = 7402345246022867712987394168675984358488158001- 908001 = (2^4)*(5^6)*13*29*911*1459*26046751*925152076787*2452153330349 == 0 (mod 5^6).
Programs
-
Maple
a(n) := coeff(series(1/((1-x))* LegendreP(k,(1+x)/(1-x))^4,x, 21): seq(a(n), n = 0..20);
-
Mathematica
Table[SeriesCoefficient[1/(1 - x) * LegendreP[n, (1 + x)/(1 - x)]^4, {x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Jul 09 2023 *)
-
PARI
a(n) = my(x='x+O('x^(n+1))); polcoef((1/(1-x))*pollegendre(n, (1+x)/(1-x))^4, n); \\ Michel Marcus, Jul 12 2023
Formula
a(n) ~ phi^(10*n + 5) / (2^(3/2) * 5^(1/4) * Pi^(5/2) * n^(5/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jul 09 2023
Comments