A364113 Square array read by ascending antidiagonals: T(n,k) = [x^k] 1/(1 - x) * Legendre_P(k, (1 + x)/(1 - x))^n for n, k >= 0.
1, 1, 1, 1, 3, 1, 1, 5, 19, 1, 1, 7, 73, 147, 1, 1, 9, 163, 1445, 1251, 1, 1, 11, 289, 5623, 33001, 11253, 1, 1, 13, 451, 14409, 235251, 819005, 104959, 1, 1, 15, 649, 29531, 908001, 11009257, 21460825, 1004307, 1, 1, 17, 883, 52717, 2511251, 65898009, 554159719, 584307365, 9793891, 1
Offset: 0
Examples
Square array begins n\k| 0 1 2 3 4 5 6 7 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 | 1 1 1 1 1 1 1 1 1 | 1 3 19 147 1251 11253 104959 1004307 2 | 1 5 73 1445 33001 819005 21460825 584307365 3 | 1 7 163 5623 235251 11009257 554159719 29359663991 4 | 1 9 289 14409 908001 65898009 5246665201 445752724041 5 | 1 11 451 29531 2511251 251831261 28224521263 3423024241627 6 | 1 13 649 52717 5665001 730485013 106898093065 17144295476461
Crossrefs
Programs
-
Maple
T(n,k) := coeff(series(1/(1-x)* LegendreP(k,(1+x)/(1-x))^n, x, 11), x, k): # display as a square array seq(print(seq(T(n, k), k = 0..10)), n = 0..10); # display as a sequence seq(seq(T(n-k, k), k = 0..n), n = 0..10);
Comments